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Power Method (i.e., Power Iteration)

• Let M ∈ Rn×n be a symmetric matrix.

• Say we want to estimate the eigenvector v1 ∈ Rn

corresponding to the largest magnitude eigenvalue λ1.

Power Method:

xt = Mv̂t−1 v̂t =
xt

∥xt∥
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• Classical error bound depends on the spectral gap, vanishing like

(
λ2

λ1

)t

.
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Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =


M1

M2
...

MJ


• Give each submatrix to a server.

Distributed Power Method:

xt =


xt,1

xt,2
...

xt,J


xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥



Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =


M1

M2
...

MJ



• Give each submatrix to a server.

Distributed Power Method:

xt =


xt,1

xt,2
...

xt,J


xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥



Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =


M1

M2
...

MJ


• Give each submatrix to a server.

Distributed Power Method:

xt =


xt,1

xt,2
...

xt,J


xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥



Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =


M1

M2
...

MJ


• Give each submatrix to a server.

Distributed Power Method:

xt =


xt,1

xt,2
...

xt,J


xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥



Distributed Power Method
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• Stragglers: What if one or more servers do not respond by the deadline?

• Coded Computing: coding for matrix multiplication with erasures.
Dutta et al. 2016, Lee et al. 2017, Yu et al. 2017 and many more.

• Can we just ignore the missing computations? (We are just refining an estimate.)
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Running Example: Spiked Matrix Estimation

• Throughout the talk, we will evaluate our theorems and numerical experiments for
the following spiked matrix model:

M =
λ

n
θθ⊤ + Z

where θ ∈ Rn is the spike and the noise Z is GOE(n).

• Goal: Estimate θ with the highest possible correlation 1
n
⟨θ, θ̂⟩.

• Recall that Z ∼ GOE(n) means
• Z ∈ Rn×n is symmetric,
• independent N(0, 1/n) entries above the diagonal,
• independent N(0, 2/n) entries on the diagonal.

• This is primarily for direct comparison with prior AMP literature.

• Our theory holds more generally.



Distributed Power Method: Ignoring Erasures
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• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)

• Row erasures are i.i.d. Bernoulli(0.9).

• Setting the missing entries to zero does not work.



Distributed Power Method: Projection Matrix Framework

• Concisely summarize erasures via δt ∈ {0, 1}n

δt,i =

{
0 ith row of M is erased at iteration t

1 otherwise

Ignoring Erasures:

xt = δt ◦Mθ̂t−1 θ̂t =

√
n

∥xt∥
xt

• Why not retain the values of the previous iterate in erased coordinates?

One-Step Memory:

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt
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Distributed Power Method: One-Step Memory
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• Z ∼ GOE(n)

• λ =
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• n = 5000

• θ ∼ Unif({±1}n)
• δt,i i.i.d. Bernoulli(0.1)

• Keeping the past iterate in erased coordinates is much better.



Related Work: Power Method and Subspace Tracking

• Many variations on this problem have been considered in the literature.

• An incomplete sampling:
• Noisy Power Method [Hardt and Price 2014, Balcan et al. 2016, Xu and Li 2022]
• Coordinate-wise Power Method [Lei et al. 2016]
• Power Method with Momentum [Xu et al. 2018]
• Adaptive Power Method [Shin et al. 2023]
• Distributed Streaming PCA [Raja and Bajwa 2020]
• Communication-Efficient Distributed SVD [Li et al. 2021]
• Oja’s Method [Oja 1982, Oja and Karhunen 1985]
• Subspace Tracking with Missing Data [Balzano et al. 2018, Wang et al. 2018]

• This Talk: Approximate Message Passing (AMP) perspective on erasures.
• Per-iteration performance guarantees via coupling to a Gaussian process.
• (Ultimately) simple correction terms.
• More efficient computation?



Approximate Message Passing (AMP)

Basic AMP:

xt = Mft(xt−1)− btft−1(xt−2)

• Data Matrix: M ∈ Rn×n

• Denoising Functions: ft : Rn → Rn

• Debiasing Coefficient: bt ∈ R

• Early work on AMP was motivated by compressed sensing [Donoho et al. 2009,

Bayati and Montanari 2011, Javanmard and Montanari 2013].

• Many other applications to regression, matrix estimation, channel coding,
massive random access, etc. See recent survey [Feng et al. 2022].

• Most work has focused on separable denoisers, we follow the framework of
[Berthier et al. 2020] that allows non-separable denoisers.



Approximate Message Passing (AMP)

Basic AMP:

xt = Zft(xt−1)− btft−1(xt−2)

• (Centered) Data Matrix: Z ∈ Rn×n

• Denoising Functions: ft : Rn → Rn

• Debiasing Coefficient: bt ∈ R

• Deterministic Initialization: f0 ∈ Rn

• State Evolution: {yt}, a zero-mean Gaussian process with covariance

Cov(y0) =
1

n
∥f0∥2 In

Cov(ys, yt) =
1

n
E[⟨fs(ys−1), ft(yt−1)⟩] In , 0 ≤ s ≤ t.

• Assumption 1: Each ft : Rn → Rn is L-Lipschitz continuous and satisfies
1√
n
∥ft(0)∥ ≤ C where C,L are positive numbers that do not depend on n.



Approximate Message Passing (AMP)

Basic AMP:

xt = Zft(xt−1)− btft−1(xt−2)

• (Centered) Data Matrix: Z ∈ Rn×n

• Denoising Functions: ft : Rn → Rn

• Debiasing Coefficient: bt ∈ R

Theorem

Suppose Assumption 1 holds, Z ∼ GOE(n), and bt =
1
n
tr(E[Dft(yt−1)]) Then, for

any fixed number of iterations T , there exists a sequence (in n) of couplings

between x≤T and y≤T such that
∥x≤T − y≤T∥√

n

pr−−−→
n→∞

0.

AMP Power Method:

xt = Mθ̂t−1 − θ̂t−1 θ̂t =

√
n

∥xt∥
xt

• State evolution provides a
“single-letter” characterization of the
performance at each iteration.



AMP Power Method
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• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• mark = empirical

• line = state evolution

• AMP correction term leads to empirical speedup.

• Accurate predictions from state evolution (SE).



AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − correction θ̂t =

√
n

∥xt∥
xt
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AMP Power Method with i.i.d. Erasures
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• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• δt,i i.i.d. Bernoulli(0.1)

• mark = empirical

• line = state evolution

• Standard correction term is not helpful: slow convergence and no state evolution.

• How can we derive the correction term? Generalize.



Linear Operator Approximate Message Passing (OpAMP)

OpAMP with Full Memory:

xt = Lt(Z)ft(x0, . . . , xt−1)−
∑
s<t

Btsfs(x0, . . . , xs−1)

• (Centered) Data Matrix: Z ∈ Rn×n

• Linear Operators: Lt(Z) =
∑K

k=1 LtkZRtk (non-unique decomposition)

• Denoising Functions: ft : Rn×t → Rn

• Matrix-Valued Debiasing Coefficients: Bts ∈ Rn×n

• Assumption 1: Each ft : Rn×t → Rn is L-Lipschitz continuous and satisfies
1√
n
∥ft(0)∥ ≤ C where C,L are positive numbers that do not depend on n.

• Assumption 2: ∥Rtk∥op, ∥Ltk∥op ≤ C ′ for all t, k ∈ N0 where C ′, K are positive
numbers that do not depend on n.



Linear Operator Approximate Message Passing (OpAMP)

• State Evolution: {yt}, a zero-mean Gaussian process with covariance

Cov(ys, yt) =
K∑

l,k=1

1

n
E[⟨Rslfs(y<s), Rtkft(y<t)⟩]LslL

⊤
tk

Theorem

Suppose Assumptions 1 and 2 hold, Z ∼ GOE(n), and

Bts =
K∑

k,l=1

1

n
tr(RtkE[Dsft(y<t)]Lsl)LtkRsl

Then, for any fixed number of iterations T , there exists a sequence (in n) of

couplings between x≤T and y≤T such that
∥x≤T − y≤T∥√

n

pr−−−→
n→∞

0.



OpAMP Proof Sketch: “Lifted” Recursion

• Define a doubly-indexed, full-memory AMP recursion:

wtk = Zgtk(w<t)−
∑
s<t

K∑
l=1

ctksl gsl(w<s) , for k = 1, . . . , K

gtk(w<t) = Rtkft

( K∑
k=1

L0kw0k, . . . ,
K∑
k=1

Lt−1,kwt−1,k

)
.

• Can show xt =
K∑
k=1

Ltkwtk.

• State evolution utk for wtk using full-memory AMP [Gerbelot and Berthier 2023].

• Obtain state evolution yt =
K∑
k=1

Ltkutk for xt.



Projection AMP

Projection AMP:

xt = Πt

(
Zft(xt−1)−

∑
s<t

btsfs(xs−1)
)
+Π⊥

t xt−1

• Projection Matrices: Πt (not necessarily diagonal, nor commuting)

• Scalar Debiasing Coefficients: bts ∈ Rn×n

• Define Cts =

{
I, s = t

Π⊥
t Π

⊥
t−1 · · ·Π⊥

s+2Π
⊥
s+1 0 ≤ s < t

Theorem

Suppose Assumption 1 holds, Z ∼ GOE(n), and bts =
1
n
tr(E[Dft(yt−1)]Ct−1,sΠs)

Then, for any fixed number of iterations T , there exists a sequence (in n) of

couplings between x≤T and y≤T such that
∥x≤T−y≤T ∥√

n

pr−−−→
n→∞

0.



OpAMP Power Method: i.i.d. Erasures

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• If δt is elementwise i.i.d. Bernoulli(γ), then we can establish a state evolution by

setting the debiasing coefficients to bts =
√
n

∥xt−1∥pt(s) where

pt(s) =

{
γ(1− γ)t−s−1 if s = 1, 2, . . . , t− 1

(1− γ)t−1 if s = 0

• State evolution has a simple form.



OpAMP Power Method: i.i.d. Erasures
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• θ ∼ Unif({±1}n)
• δt,i i.i.d. Bernoulli(0.1)

• mark = empirical

• line = state evolution

• With the OpAMP correction term, we can establish a rigorous state evolution.

• Attains the same fixed point as the AMP power method.



OpAMP Power Method: Round Robin Updates

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• Consider now the setting where we deliberately only apply a subblock of the data
matrix M at each iteration, to reduce the computational load.

• We partition the row indices {1, . . . , n} into J equally-sized subsets A0, . . . ,AJ−1.

δt,i =

{
1 i ∈ A(t mod J)

0 otherwise

• Debiasing coefficients and state evolution have a simple form.



OpAMP Power Method: Round Robin Updates
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• line = state evolution

• Round Robin: Update 0.1 rows per iteration according to a schedule.

• Noticeable speedup compared to stochastic erasures.



OpAMP Power Method: Subgaussian Matrices
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i.i.d. Rademacher

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• mark = empirical

• line = GOE state
evolution

• Empirical performance very similar.

• GOE(n) state evolution no longer a theoretical guarantee.



OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.

• Full Matrix: Standard AMP that applies the full matrix.
• Round Robin: Cycle through fixed subsets of rows of M .
• Random Update: Randomly selected rows of M applied.
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• Round Robin: Uses fewer matrix multiplications to converge.

• Random Update: Sometimes uses fewer matrix multiplications to converge.



Conclusions

• AMP perspective on the distributed power method with erasures.
• Simple state evolution and scalar debiasing coefficients.
• Same fixed point as no-erasure setting.
• Computational speedup for partial updates.
• Can also consider other denoisers, e.g., Bayes.

• Theoretical results established by first generalizing to linear operator AMP, which
may be useful in other settings.

• Some follow-up questions:
• Orthogonal ensembles?
• Adaptive updates?
• 1st-order methods with erasures?
• Noise instead of erasures?
• Connection to SGD speedup?

• Acknowledgments: Thanks to Nicholas Sacco and Viveck Cadambe for valuable
discussions on the power method with erasures.


