
OpAMP: Linear Operator

Approximate Message Passing

Riccardo Rossetti Bobak Nazer Galen Reeves
Duke BU Duke

BIRS Workshop
Algorithmic Structures for Uncoordinated Communications

and Statistical Inference in Exceedingly Large Spaces

March 13, 2024

Power Method (i.e., Power Iteration)

• Let M ∈ Rn×n be a symmetric matrix.

• Say we want to estimate the eigenvector v1 ∈ Rn

corresponding to the largest magnitude eigenvalue λ1.

Power Method:

xt = Mv̂t−1 v̂t =
xt

∥xt∥

P
Projection

M

Data Matrix

Delay
xt−1

P(xt−1) xt

• Classical error bound depends on the spectral gap, vanishing like

(
λ2

λ1

)t

.

Power Method (i.e., Power Iteration)

• Let M ∈ Rn×n be a symmetric matrix.

• Say we want to estimate the eigenvector v1 ∈ Rn

corresponding to the largest magnitude eigenvalue λ1.

Power Method:

xt = Mv̂t−1 v̂t =
xt

∥xt∥

P
Projection

M

Data Matrix

Delay
xt−1

P(xt−1) xt

• Classical error bound depends on the spectral gap, vanishing like

(
λ2

λ1

)t

.

Power Method (i.e., Power Iteration)

• Let M ∈ Rn×n be a symmetric matrix.

• Say we want to estimate the eigenvector v1 ∈ Rn

corresponding to the largest magnitude eigenvalue λ1.

Power Method:

xt = Mv̂t−1 v̂t =
xt

∥xt∥

P
Projection

M

Data Matrix

Delay
xt−1

P(xt−1) xt

• Classical error bound depends on the spectral gap, vanishing like

(
λ2

λ1

)t

.

Power Method (i.e., Power Iteration)

• Let M ∈ Rn×n be a symmetric matrix.

• Say we want to estimate the eigenvector v1 ∈ Rn

corresponding to the largest magnitude eigenvalue λ1.

Power Method:

xt = Mv̂t−1 v̂t =
xt

∥xt∥

P
Projection

M

Data Matrix

Delay
xt−1

P(xt−1) xt

• Classical error bound depends on the spectral gap, vanishing like

(
λ2

λ1

)t

.

Power Method (i.e., Power Iteration)

• Let M ∈ Rn×n be a symmetric matrix.

• Say we want to estimate the eigenvector v1 ∈ Rn

corresponding to the largest magnitude eigenvalue λ1.

Power Method:

xt = Mv̂t−1 v̂t =
xt

∥xt∥

P
Projection

M

Data Matrix

Delay
xt−1

P(xt−1) xt

• Classical error bound depends on the spectral gap, vanishing like

(
λ2

λ1

)t

.

Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =

M1

M2
...

MJ

• Give each submatrix to a server.

Distributed Power Method:

xt =

xt,1

xt,2
...

xt,J

xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥

Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =

M1

M2
...

MJ

• Give each submatrix to a server.

Distributed Power Method:

xt =

xt,1

xt,2
...

xt,J

xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥

Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =

M1

M2
...

MJ

• Give each submatrix to a server.

Distributed Power Method:

xt =

xt,1

xt,2
...

xt,J

xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥

Distributed Power Method

• What about a “distributed” power method for very large matrices?

• Partition rows of the data matrix into J equally-sized submatrices: M =

M1

M2
...

MJ

• Give each submatrix to a server.

Distributed Power Method:

xt =

xt,1

xt,2
...

xt,J

xt,1 = M1v̂t−1

xt,2 = M2v̂t−1
...

xt,J = MJ v̂t−1

v̂t =
xt

∥xt∥

Distributed Power Method

P
Projection

M1

Servers

M2
...

MJ

Stack

Delay
xt−1

P(xt−1) xt

• Stragglers: What if one or more servers do not respond by the deadline?

• Coded Computing: coding for matrix multiplication with erasures.
Dutta et al. 2016, Lee et al. 2017, Yu et al. 2017 and many more.

• Can we just ignore the missing computations? (We are just refining an estimate.)

Distributed Power Method

P
Projection

M1

Servers

M2
...

MJ

Stack

Delay
xt−1

P(xt−1) xt

• Stragglers: What if one or more servers do not respond by the deadline?

• Coded Computing: coding for matrix multiplication with erasures.
Dutta et al. 2016, Lee et al. 2017, Yu et al. 2017 and many more.

• Can we just ignore the missing computations? (We are just refining an estimate.)

Distributed Power Method

P
Projection

M1

Servers

M2
...

MJ

Stack

Delay
xt−1

P(xt−1) xt

• Stragglers: What if one or more servers do not respond by the deadline?

• Coded Computing: coding for matrix multiplication with erasures.
Dutta et al. 2016, Lee et al. 2017, Yu et al. 2017 and many more.

• Can we just ignore the missing computations? (We are just refining an estimate.)

Distributed Power Method

P
Projection

M1

Servers

M2
...

MJ

Stack

Delay
xt−1

P(xt−1) xt

• Stragglers: What if one or more servers do not respond by the deadline?

• Coded Computing: coding for matrix multiplication with erasures.
Dutta et al. 2016, Lee et al. 2017, Yu et al. 2017 and many more.

• Can we just ignore the missing computations? (We are just refining an estimate.)

Running Example: Spiked Matrix Estimation

• Throughout the talk, we will evaluate our theorems and numerical experiments for
the following spiked matrix model:

M =
λ

n
θθ⊤ + Z

where θ ∈ Rn is the spike and the noise Z is GOE(n).

• Goal: Estimate θ with the highest possible correlation 1
n
⟨θ, θ̂⟩.

• Recall that Z ∼ GOE(n) means
• Z ∈ Rn×n is symmetric,
• independent N(0, 1/n) entries above the diagonal,
• independent N(0, 2/n) entries on the diagonal.

• This is primarily for direct comparison with prior AMP literature.

• Our theory holds more generally.

Distributed Power Method: Ignoring Erasures

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Basic Power Method

Ignore Erasures

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)

• Row erasures are i.i.d. Bernoulli(0.9).

• Setting the missing entries to zero does not work.

Distributed Power Method: Projection Matrix Framework

• Concisely summarize erasures via δt ∈ {0, 1}n

δt,i =

{
0 ith row of M is erased at iteration t

1 otherwise

Ignoring Erasures:

xt = δt ◦Mθ̂t−1 θ̂t =

√
n

∥xt∥
xt

• Why not retain the values of the previous iterate in erased coordinates?

One-Step Memory:

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

Distributed Power Method: Projection Matrix Framework

• Concisely summarize erasures via δt ∈ {0, 1}n

δt,i =

{
0 ith row of M is erased at iteration t

1 otherwise

Ignoring Erasures:

xt = δt ◦Mθ̂t−1 θ̂t =

√
n

∥xt∥
xt

• Why not retain the values of the previous iterate in erased coordinates?

One-Step Memory:

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

Distributed Power Method: Projection Matrix Framework

• Concisely summarize erasures via δt ∈ {0, 1}n

δt,i =

{
0 ith row of M is erased at iteration t

1 otherwise

Ignoring Erasures:

xt = δt ◦Mθ̂t−1 θ̂t =

√
n

∥xt∥
xt

• Why not retain the values of the previous iterate in erased coordinates?

One-Step Memory:

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

Distributed Power Method: Projection Matrix Framework

• Concisely summarize erasures via δt ∈ {0, 1}n

δt,i =

{
0 ith row of M is erased at iteration t

1 otherwise

Ignoring Erasures:

xt = δt ◦Mθ̂t−1 θ̂t =

√
n

∥xt∥
xt

• Why not retain the values of the previous iterate in erased coordinates?

One-Step Memory:

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

Distributed Power Method: One-Step Memory

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Basic Power Method

Ignore Erasures

One-Step Memory

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• δt,i i.i.d. Bernoulli(0.1)

• Keeping the past iterate in erased coordinates is much better.

Related Work: Power Method and Subspace Tracking

• Many variations on this problem have been considered in the literature.

• An incomplete sampling:
• Noisy Power Method [Hardt and Price 2014, Balcan et al. 2016, Xu and Li 2022]
• Coordinate-wise Power Method [Lei et al. 2016]
• Power Method with Momentum [Xu et al. 2018]
• Adaptive Power Method [Shin et al. 2023]
• Distributed Streaming PCA [Raja and Bajwa 2020]
• Communication-Efficient Distributed SVD [Li et al. 2021]
• Oja’s Method [Oja 1982, Oja and Karhunen 1985]
• Subspace Tracking with Missing Data [Balzano et al. 2018, Wang et al. 2018]

• This Talk: Approximate Message Passing (AMP) perspective on erasures.
• Per-iteration performance guarantees via coupling to a Gaussian process.
• (Ultimately) simple correction terms.
• More efficient computation?

Approximate Message Passing (AMP)

Basic AMP:

xt = Mft(xt−1)− btft−1(xt−2)

• Data Matrix: M ∈ Rn×n

• Denoising Functions: ft : Rn → Rn

• Debiasing Coefficient: bt ∈ R

• Early work on AMP was motivated by compressed sensing [Donoho et al. 2009,

Bayati and Montanari 2011, Javanmard and Montanari 2013].

• Many other applications to regression, matrix estimation, channel coding,
massive random access, etc. See recent survey [Feng et al. 2022].

• Most work has focused on separable denoisers, we follow the framework of
[Berthier et al. 2020] that allows non-separable denoisers.

Approximate Message Passing (AMP)

Basic AMP:

xt = Zft(xt−1)− btft−1(xt−2)

• (Centered) Data Matrix: Z ∈ Rn×n

• Denoising Functions: ft : Rn → Rn

• Debiasing Coefficient: bt ∈ R

• Deterministic Initialization: f0 ∈ Rn

• State Evolution: {yt}, a zero-mean Gaussian process with covariance

Cov(y0) =
1

n
∥f0∥2 In

Cov(ys, yt) =
1

n
E[⟨fs(ys−1), ft(yt−1)⟩] In , 0 ≤ s ≤ t.

• Assumption 1: Each ft : Rn → Rn is L-Lipschitz continuous and satisfies
1√
n
∥ft(0)∥ ≤ C where C,L are positive numbers that do not depend on n.

Approximate Message Passing (AMP)

Basic AMP:

xt = Zft(xt−1)− btft−1(xt−2)

• (Centered) Data Matrix: Z ∈ Rn×n

• Denoising Functions: ft : Rn → Rn

• Debiasing Coefficient: bt ∈ R

Theorem

Suppose Assumption 1 holds, Z ∼ GOE(n), and bt =
1
n
tr(E[Dft(yt−1)]) Then, for

any fixed number of iterations T , there exists a sequence (in n) of couplings

between x≤T and y≤T such that
∥x≤T − y≤T∥√

n

pr−−−→
n→∞

0.

AMP Power Method:

xt = Mθ̂t−1 − θ̂t−1 θ̂t =

√
n

∥xt∥
xt

• State evolution provides a
“single-letter” characterization of the
performance at each iteration.

AMP Power Method

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

AMP Power Method

Power Method

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• mark = empirical

• line = state evolution

• AMP correction term leads to empirical speedup.

• Accurate predictions from state evolution (SE).

AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − correction θ̂t =

√
n

∥xt∥
xt

AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − correction θ̂t =

√
n

∥xt∥
xt

AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − correction θ̂t =

√
n

∥xt∥
xt

AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − correction θ̂t =

√
n

∥xt∥
xt

AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − correction θ̂t =

√
n

∥xt∥
xt

AMP Power Method with i.i.d. Erasures

• We would like to make the AMP Power Method resilient to erasures.

• Recall that the δt captures the erasure pattern.

• Can only compute δt ◦Mft(xt−1) rather than Mft(xt−1).

• Can we find a good correction term that establishes a rigorous state evolution?

• Näıve Approach: Just reuse the Basic AMP correction term.

AMP Power Method with Erasures???

xt = δt ◦Mθ̂t−1 + (1− δt) ◦ θ̂t−1 − δt ◦ θ̂t−1 θ̂t =

√
n

∥xt∥
xt

AMP Power Method with i.i.d. Erasures

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

AMP Power Method

Erasures with Basic AMP Correction

Erasures with No Correction

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• δt,i i.i.d. Bernoulli(0.1)

• mark = empirical

• line = state evolution

• Standard correction term is not helpful: slow convergence and no state evolution.

• How can we derive the correction term? Generalize.

Linear Operator Approximate Message Passing (OpAMP)

OpAMP with Full Memory:

xt = Lt(Z)ft(x0, . . . , xt−1)−
∑
s<t

Btsfs(x0, . . . , xs−1)

• (Centered) Data Matrix: Z ∈ Rn×n

• Linear Operators: Lt(Z) =
∑K

k=1 LtkZRtk (non-unique decomposition)

• Denoising Functions: ft : Rn×t → Rn

• Matrix-Valued Debiasing Coefficients: Bts ∈ Rn×n

• Assumption 1: Each ft : Rn×t → Rn is L-Lipschitz continuous and satisfies
1√
n
∥ft(0)∥ ≤ C where C,L are positive numbers that do not depend on n.

• Assumption 2: ∥Rtk∥op, ∥Ltk∥op ≤ C ′ for all t, k ∈ N0 where C ′, K are positive
numbers that do not depend on n.

Linear Operator Approximate Message Passing (OpAMP)

• State Evolution: {yt}, a zero-mean Gaussian process with covariance

Cov(ys, yt) =
K∑

l,k=1

1

n
E[⟨Rslfs(y<s), Rtkft(y<t)⟩]LslL

⊤
tk

Theorem

Suppose Assumptions 1 and 2 hold, Z ∼ GOE(n), and

Bts =
K∑

k,l=1

1

n
tr(RtkE[Dsft(y<t)]Lsl)LtkRsl

Then, for any fixed number of iterations T , there exists a sequence (in n) of

couplings between x≤T and y≤T such that
∥x≤T − y≤T∥√

n

pr−−−→
n→∞

0.

OpAMP Proof Sketch: “Lifted” Recursion

• Define a doubly-indexed, full-memory AMP recursion:

wtk = Zgtk(w<t)−
∑
s<t

K∑
l=1

ctksl gsl(w<s) , for k = 1, . . . , K

gtk(w<t) = Rtkft

(K∑
k=1

L0kw0k, . . . ,
K∑
k=1

Lt−1,kwt−1,k

)
.

• Can show xt =
K∑
k=1

Ltkwtk.

• State evolution utk for wtk using full-memory AMP [Gerbelot and Berthier 2023].

• Obtain state evolution yt =
K∑
k=1

Ltkutk for xt.

Projection AMP

Projection AMP:

xt = Πt

(
Zft(xt−1)−

∑
s<t

btsfs(xs−1)
)
+Π⊥

t xt−1

• Projection Matrices: Πt (not necessarily diagonal, nor commuting)

• Scalar Debiasing Coefficients: bts ∈ Rn×n

• Define Cts =

{
I, s = t

Π⊥
t Π

⊥
t−1 · · ·Π⊥

s+2Π
⊥
s+1 0 ≤ s < t

Theorem

Suppose Assumption 1 holds, Z ∼ GOE(n), and bts =
1
n
tr(E[Dft(yt−1)]Ct−1,sΠs)

Then, for any fixed number of iterations T , there exists a sequence (in n) of

couplings between x≤T and y≤T such that
∥x≤T−y≤T ∥√

n

pr−−−→
n→∞

0.

OpAMP Power Method: i.i.d. Erasures

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• If δt is elementwise i.i.d. Bernoulli(γ), then we can establish a state evolution by

setting the debiasing coefficients to bts =
√
n

∥xt−1∥pt(s) where

pt(s) =

{
γ(1− γ)t−s−1 if s = 1, 2, . . . , t− 1

(1− γ)t−1 if s = 0

• State evolution has a simple form.

OpAMP Power Method: i.i.d. Erasures

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

AMP Power Method

Erasures with OpAMP Correction

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• δt,i i.i.d. Bernoulli(0.1)

• mark = empirical

• line = state evolution

• With the OpAMP correction term, we can establish a rigorous state evolution.

• Attains the same fixed point as the AMP power method.

OpAMP Power Method: Round Robin Updates

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• Consider now the setting where we deliberately only apply a subblock of the data
matrix M at each iteration, to reduce the computational load.

• We partition the row indices {1, . . . , n} into J equally-sized subsets A0, . . . ,AJ−1.

δt,i =

{
1 i ∈ A(t mod J)

0 otherwise

• Debiasing coefficients and state evolution have a simple form.

OpAMP Power Method: Round Robin Updates

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Full Matrix

Round Robin

Random Update

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• mark = empirical

• line = state evolution

• Round Robin: Update 0.1 rows per iteration according to a schedule.

• Noticeable speedup compared to stochastic erasures.

OpAMP Power Method: Subgaussian Matrices

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Full Matrix

Round Robin
Random Update

Iteration, t

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z symmetric from
i.i.d. Rademacher

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• mark = empirical

• line = GOE state
evolution

• Empirical performance very similar.

• GOE(n) state evolution no longer a theoretical guarantee.

OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.

• Full Matrix: Standard AMP that applies the full matrix.
• Round Robin: Cycle through fixed subsets of rows of M .
• Random Update: Randomly selected rows of M applied.

OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.

• Full Matrix: Standard AMP that applies the full matrix.
• Round Robin: Cycle through fixed subsets of rows of M .
• Random Update: Randomly selected rows of M applied.

OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.

• Full Matrix: Standard AMP that applies the full matrix.
• Round Robin: Cycle through fixed subsets of rows of M .
• Random Update: Randomly selected rows of M applied.

OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.
• Full Matrix: Standard AMP that applies the full matrix.

• Round Robin: Cycle through fixed subsets of rows of M .
• Random Update: Randomly selected rows of M applied.

OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.
• Full Matrix: Standard AMP that applies the full matrix.
• Round Robin: Cycle through fixed subsets of rows of M .

• Random Update: Randomly selected rows of M applied.

OpAMP Power Method: Efficient Computation

OpAMP Power Method:

xt = δt ◦
(
Mxt−1 −

∑
s<t

btsθ̂s

)
+ (1− δt) ◦ xt−1 θ̂t =

√
n

∥xt∥
xt

• So far, we have plotted the performance with respect to iteration t.

• Alternatively, we could plot the performance with respect to the amount of
large-scale computation. (Ignores normalization steps, etc.)

• For instance, we could track the total number of n× n matrix multiplications.
• Full Matrix: Standard AMP that applies the full matrix.
• Round Robin: Cycle through fixed subsets of rows of M .
• Random Update: Randomly selected rows of M applied.

OpAMP Power Method: Efficient Computation

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Full MatrixRound Robin

Random Update

Number of n× n Matrix Multiplications

C
or
re
la
ti
on

• M =
λ

n
θθ⊤ + Z

• Z ∼ GOE(n)

• λ =
√
2

• n = 5000

• θ ∼ Unif({±1}n)
• mark = empirical

• line = state evolution

• Round Robin: Uses fewer matrix multiplications to converge.

• Random Update: Sometimes uses fewer matrix multiplications to converge.

Conclusions

• AMP perspective on the distributed power method with erasures.
• Simple state evolution and scalar debiasing coefficients.
• Same fixed point as no-erasure setting.
• Computational speedup for partial updates.
• Can also consider other denoisers, e.g., Bayes.

• Theoretical results established by first generalizing to linear operator AMP, which
may be useful in other settings.

• Some follow-up questions:
• Orthogonal ensembles?
• Adaptive updates?
• 1st-order methods with erasures?
• Noise instead of erasures?
• Connection to SGD speedup?

• Acknowledgments: Thanks to Nicholas Sacco and Viveck Cadambe for valuable
discussions on the power method with erasures.

