User Activity Detection in Grant-Free Massive Random Access **Prof. Chandra R Murthy** Dept. of ECE, Indian Institute of Science

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces Mar. 12, 2024

Disclaimer See these talks

- Gianluigi Liva
- Alex Fengler
- Wei Yu
- Ya-Feng Liu
- And others to follow ...

Massive Random Access (mRA)

- 5G, 6G, and beyond-5G applications: eMBB, URLLC, and Massive Random Access (mRA)
- mRA expected to serve millions of devices/km²
 - mRA devices are sporadically active and transmit short packets
- Grant-free random access (GFRA) protocols can efficiently serve mRA
 - Advantages: Low control overhead, non-orthogonal use of channel

Challenges in mMTC

- User activity detection
- Channel estimation
- Non-orthogonal pilot sequences, leading to pilot contamination
 - Special cases: Orthogonal pilot reuse, quasi-orthogonal pilots, random pilots
- Multi-user interference
- Practical aspects: Path loss, fading, MIMO, short packets, time & frequency synchronization

Irregular Repetition Slotted Aloha (IRSA)

- In IRSA, each user transmits several replicas of the packet in randomly chosen slots
 - Each replica has pilot, data & error check
 - Repetition distribution governs slot indices for the transmission of packet replicas
- Decoding via successive interference cancellation (SIC)
 - Continue SIC iteratively until no more users can be decoded

K. R. Narayanan and H. D. Pfister, "Iterative collision resolution for slotted ALOHA: An optimal uncoordinated transmission policy," in Proc. ISTC, Aug 2012, pp. 136–139.

System Model

- *M* single-antenna users, *N* antenna BS
- T resource blocks, τ -length pilots
- Binary access pattern matrix $G_{T \times M}$ governs replica transmission
- Received pilot signal:

• Received data signal:

User Activity Detection (UAD) in IRSA

- Less than 1% of mRA devices are active at any instant
- Support recovery problem in compressed sensing (CS)
- Underdetermined system of equations with a sparse vector/ matrix to be estimated
- Multiple measurement vector (MMV): Columns of X share a common support

- au Pilot length
- *M* Number of users
- N Number of antennas

How to choose pilot length?

- jointly k-sparse
- Model: $\mathbf{Y}_{\tau \times N} = \mathbf{P}_{\tau \times M} \mathbf{X}_{M \times N} + \mathbf{Z}_{\tau \times N}$
- Sufficient condition for support recovery of $\mathbf{X}_{M \times N}$:
 - Choosing $\tau = \Omega(k \log(M/k))$ yields a vanishing support recovery error rate as $M \to \infty$, when $N \gg \log M / \log \log M$
- Practically, this translates to choosing $\tau = ck \log(M/k)$

Reference: G. Tang and A. Nehorai, "Performance analysis for sparse support recovery," IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1383–1399, Mar. 2010.

- Setup: MMV compressed sensing problem where the columns of ${f X}$ are

Pilot length scaling laws

- Suppose the sensing matrix **P** has i.i.d. sub-Gaussian entries
- M-SBL recovers the true support with vanishing prob. error, provided

$$\tau = \Theta(k \log M)$$
 and $N = \Omega\left(\frac{M}{k} \log M + M \log k + M \log \log M\right)$

• Or

$$\tau = \Theta(\sqrt{k}\log M)$$
 and $N = \Omega\left(\frac{M}{\sqrt{k}}\log M + M\sqrt{k}\log k + M\sqrt{k}\log\log M\right)$

ullet

Here, k = num. of active users, M = total num. users, N = num. antennas

 Due to the structure of IRSA, for an active user, the row entries are nonzero in chunks

- Row-chunk sparsity
- Our solution: Bayesian algorithm inspired by the Sparse Bayesian Learning (SBL) framework
- SBL: Impose a prior on the covariance of the channels of the users and use it to estimate the activity coefficients

UAD Algorithm

- SBL: Finds the MAP estimate of the user's activity coefficients by using a fictitious, sparsity-promoting hierarchical prior
- Idea: Estimate the channel covariance goes to zero for inactive users!
- Objective: $\log(p(\mathbf{Y}_t^{\mathrm{p}}; \boldsymbol{\gamma}_t)) \propto -N \log(p(\mathbf{Y}_t^{\mathrm{p}}; \boldsymbol{\gamma}_t))$
- Solution: Expectation maximization to iteratively find MAP estimate
- The first algorithm for UAD specifically for IRSA!
 - UAD algorithm can be applied to all variants of IRSA
 - (Much) faster versions of M-SBL exist, and our modification to M-SBL can be applied to the faster versions also

$$g | \boldsymbol{\Sigma}_{\boldsymbol{\gamma}_t} | - Tr(\boldsymbol{\Sigma}_{\boldsymbol{\gamma}_t}^{-1} \mathbf{Y}_t^{\mathrm{p}} \mathbf{Y}_t^{\mathrm{p}H})$$

Publication: C. R. Srivatsa and C. R. Murthy, "User Activity Detection for Irregular Repetition Slotted Aloha Based **MMTC**," in *IEEE Transactions on Signal Processing*, vol. 70, pp. 3616-3631, 2022, doi: 10.1109/TSP.2022.3185891.

Numerical Results

- Metrics: False negative rate and false positive rate
- Setup: *T* = 50 slots, *M* = 1500
 users, *N* = 4 antennas, 1% active
- For other algorithms, we perform $\hat{a}_i = 1\{\sum_{t=1}^T \hat{a}_i^{(t)} \ge 1\}$
- At FNR=0.2: 4-fold reduction in τ compared to classical detection techniques (ML, AMP) since we exploit structure

How to improve UAD performance?

- Pilot length of $\tau = 20$ is sufficient for very low error rates for 1500 users!
- Conventional MMV CS algorithms would need $\tau = k \ln(M/k) = 350$ to achieve a similar performance
- Insight: Very low τ sufficient: Huge reduction in overhead for mRA
- Takeaway: Increasing pilot length is lacksquaremore beneficial than increasing the number of antennas

13

-		-		
		-		
		-		
		-		
		-		
		-		
		-		
		-		
		1		
		1		
		-		
		_		
		-		
_				
		-		
_	۔ ر)	()
			-	_

	-	_	_	
			-	
		-		
-	-	-		
			-	
	2	6		
	6	/		
	7		-	
			_	
Ν				
2	ς.			
	1			
			-	
			-	
		-		
		_		
1	1			
		٠		
	1			
		-		7
	1	7		
	1	v		•
			-	
			-	
			-	
			-	
-	-	-	-	
-	-	-	-	
			-	
			-	
			-	
			,	
			-	
			,	
			,	
			_	
			-	
			-	
			-	
			-	
			-	
			-	
			,	
-	-		_	
1	Ľ		1	
	L		•	\mathbf{I}
				/ 🗡
1			1	<u>''</u> ()
	-		_	

Choice of Pilot Sequences

- Orthogonal pilot reuse (OPR) performed with Hadamard and DFT pilots
- All pilot sequences yield similar UAD performance
- Non-orthogonal pilots (MPSK/Gaussian) yield higher throughput than OPR due to diversity
 - Pr(Two users choosing identical pilot sequences within a slot in IRSA) is lower for non-orthogonal pilots

14

Pilot length scaling with load for UAD

- For the UAD problem in IRSA, we need to choose the pilot length as $\tau = cM_a \log(M/M_a)$, where M is the total number of users, M_a is the number of active users, and T is the number of slots
 - We use the average number of active users $\mathbb{E}[M_a] = Mp_a$ instead of M_a in the above, where p_a is the per-user activity probability
- Under typical mRA settings, p_a and T are fixed, and $M_a \approx \mathbb{E}[M_a] = M p_a$ • Effectively, the pilot length needs to scale logarithmically with the load

Pilot length scaling with load for UAD

- In IRSA, in each slot, only Ld users collide on average; where L is the IRSA system load, and d is the average number of replicas transmitted by users
- Effectively, much fewer users collide in each slot, i.e., $Ld \ll M$
 - This implies that low pilot lengths are sufficient for accurate UAD
 - $\tau = cM_a \log(M/M_a) = cL\bar{d}(-p_a \log(p_a))$
- Under typical mRA settings, with $M = 10^5$, $p_a = 0.01$, T = 100, $\overline{d} = 3$, pilot length of the order 30 is sufficient
 - With $\tau \ge 30$, we observe vanishing error rates in this regime

Interesting directions

- Short packet communications (e.g., using) Polyanskiy's results)
- Time and frequency synchronization errors
- Energy efficiency, latency, age-of-information
- Power control and performance improvement

Shameless ad: Lekshmi Ramesh's talk at 14.00 today I I AI IK YUU: Email: cmurthy@iisc.ac.in

