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Massive Random Access (mRA)

« 5G, 6G, and beyond-5G applications:
eMBB, URLLC, and Massive Random
Access (mMRA)

» MRA expected to serve millions of
devices/km?2

« mMRA devices are sporadically active and
transmit short packets

« Grant-free random access (GFRA)
protocols can efficiently serve mRA

- Advantages: Low control overhead,
non-orthogonal use of channel




Challenges in mMTC

User activity detection

. . rmax
Channel estimation
Non-orthogonal pilot sequences, poo T
leading to pilot contamination t
J P User 1
» Special cases: Orthogonal pilot reuse, h
quasi-orthogonal pilots, random pilots | User2
User m Base r2

Multi-user interference !
Station

Practical aspects: Path loss, fading, ||
MIMO, short packets, time & frequency

synchronization




Irregular Repetition User 1 [User2 [User 3 |User 4
Slotted Aloha (IRSA) stor 1| T [ B
L

« In IRSA, each user transmits several replicas of the

packet in randomly chosen slots Slot 2

- Each replica has pilot, data & error check

Slot 3 }I
« Repetition distribution governs slot indices for the
transmission of packet replicas |

« Decoding via successive interference cancellation (SIC)

- Continue SIC iteratively until no more users can be
Slot 1
decoded
K. R. Narayanan and H. D. Pfister, “lterative Slot 2
collision resolution for slotted ALOHA: An
optimal uncoordinated transmission policy,” in Slof 3
0
LProc. ISTC, Aug 2012, pp. 136—139.




System Model

M single-antenna users, N antenna BS

I‘IIlaX
T resource blocks, 7-length pilots
I’1
B. . G ht
inary access pattern matrix Gry User 1
. . . SCT
governs replica transmission
ho
Received pI|Ot S|gnaI: Access coefficient . User 2
D M / B D User m Base r2
Y, = E 1amgtmhtmpm + Nt Station
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Received data signal: Mot Noise

M \ Path loss
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m;_l/ < htm — \/ﬁmv m
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User Activity Detection (UAD) in IRSA

L ess than 1% of mMRA devices

are active at any instant

Support recovery problem in

compressed sensing (CS) " "
Underdetermined system of

equations with a sparse vector/  tXN TxM

matrix to be estimated T<M X

| Mx N
Multiple measurement vector

(MMV): Columns of X share a
common support

« 7 - Pilot length
» M - Number of users

« N - Number of antennas
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How to choose pilot length?

. Setup: MMV compressed sensing problem where the columns of X are
jointly k-sparse

» Model: Y .y = P Xpn + L
. Sufficient condition for support recovery of X,

+ Choosing 7 = Q(klog(M/k)) yields a vanishing support recovery error
rate as M — oo, when N > log M/log log M

. Practically, this translates to choosing 7 = ck log(M/k)

Reference: G. Tang and A. Nehorai, “Performance analysis for sparse support recovery,”
IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1383-1399, Mar. 2010.
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Pilot length scaling laws

Suppose the sensing matrix P has i.i.d. sub-Gaussian entries

M-SBL recovers the true support with vanishing prob. error, provided

M
T =0O(klog M) and N = () (?logMnLMlogk—FMloglogM)

Or

M
T = @(\/%logM) and N = () (ﬁlogM%—M\/Elogk%—M\/%loglogM)

Here, k = num. of active users, M = total num. users, N = num. antennas

S. Khanna and M., T-IT Nov. 2022



« Due to the structure of

IRSA, for an active

user, the row entries

are nonzero in chunks Y P .
, T X NT TX M
« Row-chunk sparsity
] : ] M x NT
» Our solution: Bayesian algorithm
inspired by the Sparse Bayesian Jouble
. Sparsity
Learning (SBL) framework Structure ! 0 0 O
: o O | b I 0
- SBL: Impose a prior on the ST F
covariance of the channels of pattern Sparsity L e
the users and use it to estimate I I
the activity coefficients Activity Sparsity
e L LY ‘ ‘ e . . .
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UAD Algorithm

« SBL: Finds the MAP estimate of the user’s activity coefficients by using a
fictitious, sparsity-promoting hierarchical prior

 |dea: Estimate the channel covariance - goes to zero for inactive users!
. , ~1 H

. Objective: log(p(Y?;7,)) o« — N log | X, | —Tr(Z, YY)

« Solution: Expectation maximization to iteratively find MAP estimate

« The first algorithm for UAD specifically for IRSA!

- UAD algorithm can be applied to all variants of IRSA

« (Much) faster versions of M-SBL exist, and our modification to M-SBL can be

applied to the faster versions also

Publication: C. R. Srivatsa and C. R. Murthy, "User Activity Detection for Irregular Repetition Slotted Aloha Based
MMTC," in IEEE Transactions on Signal Processing, vol. 70, pp. 3616-3631, 2022, doi: 10.1109/TSP.2022.3185891.
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Numerical Results

Metrics: False negative rate and

false positive rate F>AMP, 7 = 10
g N 1ML, 7 = 10
Setup: T =50 slots, M =1500 S S~ 4 ML, 7 = 40
_ 0 : ‘ ©Proposed, 7 = 10
users, N = 4 antennas, 1% active % . "'E] B - SeProposed.  — 15
For other algorithms, we perform & +
A T /\(l’) Z O . ’
a;=1{), _ a">1} ;
T@ N
L. — 0. >
At FNR=0.2: 4-fold reduction in t N
N

compared to classical detection
techniques (ML, AMP) since we
exploit structure

Y —
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False Positive Rate
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How toimprove UAD £ <% - %
performance? i

Pilot length of 7 = 20 is sufficient for
very low error rates for 1500 users!

False Negative Rate

" " 6 8 10 1|2 1I4 1I6 1|8 20
Conventional MMV CS algorithms Pilot Length ()

would need 7 = kIn(M/k) = 350 to
achieve a similar performance

Insight: Very low 7 sufficient: Huge
reduction in overhead for mRA

p—l
3

Takeaway: Increasing pilot length is
more beneficial than increasing the
number of antennas 2 4 § 16 32 64 128
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—+72C, 7=7
S¢DFT, 7 = 8
& Hadamard, 7 = 8
-------- Gaussian, 7 = 8
- - BPSK, 7 =8
—QPSK, 7 =8

Choice of Pilot Sequences |

» Orthogonal pilot reuse (OPR) performed
with Hadamard and DFT pilots

. All pilot sequences yield similar UAD

perfcrmance 0 0.2 0.4 0.6 e 0.8
FPR
» Non-orthogonal pilots (MPSK/Gaussian) 24 ' l ) )
yield higher throughput than OPR due 22 / R
to diversity 51: I S — R
» Pr(Two users choosing identical pilot (,;;‘ —QPSK, 7 =38 i

sequences within a slot in IRSA) is §1.4— +§g§537758 <
lower for non-orthogonal pilots 12 O Hadamard, 7 — 8 o
al >DFT, 7 =8 _
S
0'81.6 1.8 ) 2.9 2.4 2.6 2.8

14 Load (L)



Pilot length scaling with load for UAD

- For the UAD problem in IRSA, we need to choose the pilot length as
v =cM log(M/M,), where M is the total number of users, M, is the

number of active users, and 7 is the number of slots

. We use the average number of active users E[M | = Mp  instead of M in

the above, where p_ is the per-user activity probability

. Under typical mRA settings, p,and 1 are fixed, and M ~ [E[M | = Mp,

. Effectively, the pilot length needs to scale logarithmically with the load
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Pilot length scaling with load for UAD

. In IRSA, in each slot, only Ld users collide on average; where L is the IRSA
system load, and d is the average number of replicas transmitted by users

. Effectively, much fewer users collide in each slot, i.e., Ld< M

- This implies that low pilot lengths are sufficient for accurate UAD
e T=cM log(M/M, ) = CLJ(—pa log(p,))

. Under typical mRA settings, with M = 1()5,pa = 0.01, T =100, d = 3, pilot
length of the order 30 is sufficient

. With 7 > 30, we observe vanishing error rates in this regime
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Interesting directions

- Short packet communications (e.g., using
Polyanskiy’s results)

- Time and frequency synchronization errors
» Energy efficiency, latency, age-of-information

- Power control and performance improvement

Shameless ad: Lekshmi Ramesh’s talk at 14.00 today

Thank you!

Email: cmurthy@iisc.ac.in
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