

Concatenated Coding-Free Massive Unsourced Random via Bilinear Vector Approximate Message Passing

Faouzi Bellili

ECE Department Price Faculty of Engineering University of Manitoba

Collaborators

Volodymyr Shyianov

Mohamed Akrout

Amine Mezghani

Wei Yu

Massive Unsourced Random Access: Slotted transmissions and coupled CS

Massive Unsourced Random Access: Slotted transmissions and bilinear recovery

Massive Unsourced Random Access: Slotted transmissions and bilinear recovery

Massive Unsourced Random Access: Slotted transmissions and bilinear recovery

Data Encoding

Received Signal

user 1:
$$\widetilde{\mathbf{c}}_{1l} \rightarrow \mathbf{h}_{1} \rightarrow \mathbf{Y}_{1l} = \widetilde{\mathbf{c}}_{1l} \mathbf{h}_{1}^{\mathsf{T}} = \mathbf{C} \boldsymbol{\delta}_{1l} \mathbf{h}_{1}^{\mathsf{T}}$$

user k: $\widetilde{\mathbf{c}}_{kl} \rightarrow \mathbf{h}_{k} \rightarrow \mathbf{Y}_{kl} = \widetilde{\mathbf{c}}_{kl} \mathbf{h}_{k}^{\mathsf{T}} = \mathbf{C} \boldsymbol{\delta}_{kl} \mathbf{h}_{k}^{\mathsf{T}} \rightarrow \mathbf{Y}_{l} = \sum_{k=1}^{K} \mathbf{Y}_{kl} + \mathbf{W}_{l} = \mathbf{C} \sum_{k=1}^{K} \boldsymbol{\delta}_{kl} \mathbf{h}_{k}^{\mathsf{T}} + \mathbf{W}_{l}$
user K: $\widetilde{\mathbf{c}}_{Kl} \rightarrow \mathbf{h}_{K} \rightarrow \mathbf{Y}_{Kl} = \widetilde{\mathbf{c}}_{Kl} \mathbf{h}_{K}^{\mathsf{T}} = \mathbf{C} \boldsymbol{\delta}_{Kl} \mathbf{h}_{K}^{\mathsf{T}}$
5/19

Data Encoding

6/19

Received Signal

slot *l*

Channel deconstruction *

user k

* A. M. Sayeed, "Deconstructing multiantenna fading channels," *IEEE Trans. Signal Process.*, vol. 50, no. 10, pp. 2563–2579, Oct. 2002.

 $p(\boldsymbol{U}, \boldsymbol{V} | \boldsymbol{Y}) = p(\boldsymbol{Y} | \boldsymbol{U}, \boldsymbol{V}) p(\boldsymbol{U}) p(\boldsymbol{V})$

separable priors

M. Akrout, et al. "BiG-VAMP: The bilinear generalized vector approximate message algorithm," Asilomar'22

Massive Unsourced Random Access via Bilinear Recovery: General Purpose BiVAMP

Massive Unsourced Random Access via Bilinear Recovery: General Purpose BiVAMP

Massive Unsourced Random Access via Bilinear Recovery: From BiVAMP to BiG-VAMP

Received Signal

slot *l*

All users:
$$Y_l = \mathbf{C} \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{\mathcal{H}}^{\mathsf{H}} \\ \mathbf{\mathcal{H}}^{\mathsf{H}} \end{bmatrix} \mathbf{F}^{\mathsf{H}} + \mathbf{W}_l$$

All slots

All users:

$$: \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_L \\ \mathbf{Y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta}_1 \\ \mathbf{\Delta}_L \\ \mathbf{\Delta}_L \end{bmatrix} \begin{bmatrix} \mathbf{W} \\ \mathbf{W} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{H} \end{bmatrix} + \mathbf{W} = \underbrace{\mathcal{C} \mathbf{\Delta} (\mathbf{F} \\ \mathbf{U} \\ \mathbf{V} \end{bmatrix} + \mathbf{W} \\ \mathbf{U} \\ \mathbf{V} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_L \\ \mathbf{Y}_L \end{bmatrix} = \begin{bmatrix} \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta}_1 \\ \mathbf{\Delta}_L \\ \mathbf{\Delta}_L \end{bmatrix} \begin{bmatrix} \mathbf{W} \\ \mathbf{W} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \mathbf{H} \end{bmatrix} + \mathbf{W} = \underbrace{\mathcal{C} \mathbf{\Delta} (\mathbf{F} \\ \mathbf{U} \\ \mathbf{V} \end{bmatrix} + \mathbf{W} \\ \mathbf{U} \\ \mathbf{V} \end{bmatrix}$$

 $p(\boldsymbol{\Delta}, \boldsymbol{\mathcal{H}}, \boldsymbol{U}, \boldsymbol{V} | \boldsymbol{Y})$

 $\propto p(\mathbf{Y}|\mathbf{U},\mathbf{V})\delta(\mathbf{U}-\mathcal{C}\mathbf{\Delta})p(\mathbf{\Delta})\delta(\mathbf{V}-\mathbf{F}\mathcal{H})p(\mathcal{H})$

$$= \left(\prod_{l=1}^{L} p(\mathbf{Y}_{l}|\mathbf{U}_{l}, \mathbf{V}) \delta(\mathbf{U}_{l} - \mathbf{C}\boldsymbol{\Delta}_{l}) p(\mathbf{\Delta}_{l})\right) \delta(\mathbf{V} - \mathbf{F}\boldsymbol{\mathcal{H}}) p(\boldsymbol{\mathcal{H}})$$
$$= \left(\prod_{l=1}^{L} p(\mathbf{Y}_{l}|\mathbf{U}_{l}, \mathbf{V}) \delta(\mathbf{U}_{l} - \mathbf{C}\boldsymbol{\Delta}_{l}) \prod_{k=1}^{K} p_{\boldsymbol{\delta}}(\boldsymbol{\delta}_{k,l})\right) \delta(\mathbf{V} - \mathbf{F}\boldsymbol{\mathcal{H}}) \prod_{m=1}^{M} p_{\boldsymbol{h}}(\boldsymbol{\hbar}_{m})$$

Massive Unsourced Random Access via Bilinear Recovery: Customizing BiVAMP

Massive Unsourced Random Access via Bilinear Recovery: Customizing BiVAMP

 $B_V \Lambda_V^{-1} = \mathbf{F} \mathcal{H}^- N_V$

LMMSE Estimation 16/19

of antennas = **50**

of bits = **100**

channel uses = **3600**

Infinite resolution

Fig. 2: Minimum E_b/N_0 as a function of the number of active users at a target error probability of 10^{-1} .

Low resolution (i.e., Quantized)

Fig. 10: E_b/N_0 needed as a function of the number of active users at a target error probability of 10^{-1}

of antennas = **50**

of bits = **100**

channel uses = **3600**

Infinite resolution

Low resolution (i.e., Quantized)

Bilinear recovery is essential for concatenated coding-free mURA

Joint processing is **inevitable** to operate at extremely low SNRs