Optimal Bounds for Noisy Computing

Nadim Ghaddar

University of Toronto

Joint work with Ziao Wang, Banghua Zhu, and Lele Wang

Banff International Research Station (BIRS) Workshop Banff, Canada

March 11, 2024

Motivation

• Computing in the presence of noise

Motivation

• Computing in the presence of noise

E.g. *n* sensors make noisy measurements of signals x_1, \ldots, x_n

Controller adaptively probes one of the sensors to make a measurement.

• Goal: Compute a function $f(x_1, ..., x_n)$ from noisy measurements

Motivation

• Computing in the presence of noise

E.g. *n* sensors make noisy measurements of signals x_1, \ldots, x_n

Controller adaptively probes one of the sensors to make a measurement.

- Goal: Compute a function $f(x_1, \ldots, x_n)$ from noisy measurements
- Applications
 - Fault tolerance
 - Active ranking
 - Recommendation systems
 - • •

Problem Statement (OR Function)

• Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$$
.

• OR function:

$$\mathsf{OR}(\mathbf{x}) = \begin{cases} 1, & \text{if } \exists i \in [n] : x_i = 1 \\ 0, & \text{otherwise.} \end{cases}$$

• Goal: Find an estimate of OR(x) using noisy readings.

Problem Statement (OR Function)

• Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$$
.

• OR function:

$$\mathsf{OR}(\mathbf{x}) = egin{cases} 1, & ext{if } \exists \ i \in [n]: x_i = 1 \ 0, & ext{otherwise}. \end{cases}$$

- Goal: Find an estimate of OR(x) using noisy readings.
 - At kth time step, submit query $U_k = x_i$ for some $i \in [n]$.
 - Receive noisy response

$$Y_k = U_k \oplus Z_k$$

where $Z_k \sim \text{Bern}(p)$, for some fixed and known p < 1/2.

• After T queries, compute estimate \widehat{OR} of $OR(\mathbf{x})$.

Problem Statement (OR Function)

• Let
$$\mathbf{x} = (x_1, \dots, x_n) \in \{0, 1\}^n$$
.

• OR function:

$$\mathsf{OR}(\mathbf{x}) = egin{cases} 1, & ext{if } \exists \ i \in [n]: x_i = 1 \ 0, & ext{otherwise}. \end{cases}$$

- Goal: Find an estimate of OR(x) using noisy readings.
 - At kth time step, submit query $U_k = x_i$ for some $i \in [n]$.
 - Receive noisy response

$$Y_k = U_k \oplus Z_k$$

where $Z_k \sim \text{Bern}(p)$, for some fixed and known p < 1/2.

- After T queries, compute estimate \widehat{OR} of $OR(\mathbf{x})$.
- Question: How many queries are needed to find \widehat{OR} s.t.

$$\sup_{\mathbf{x}} \mathsf{P}(\widehat{\mathsf{OR}} \neq \mathsf{OR}(\mathbf{x})) \leq \delta?$$

Related Work (OR Function)

- Noisy boolean decision trees
 - Computation of boolean functions in the presence of noise
 - $\Omega(n \log n)$ queries are necessary when querying strategy is non-adaptive¹²³
 - $\mathcal{O}(n)$ queries are sufficient when querying strategy is adaptive using a tournament algorithm⁴

¹R. L. Dobrushin and S. I. Ortyukov. "Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements". In: Problemy Peredachi Informatsii 13.1 (1977), pp. 82–89.

²N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. "On a lower bound for the redundancy of reliable networks with noisy gates". In: IEEE Trans. Inf. Theory 37.3 (1991), pp. 639–643.

³ P. Gács and A. Gál. "Lower bounds for the complexity of reliable Boolean circuits with noisy gates". In: *IEEE Trans. Inf. Theory* 40.2 (1994), pp. 579–583.

⁴U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.

⁵J.-Y. Audibert, S. Bubeck, and R. Munos. "Best arm identification in multi-armed bandits.". In: COLT (2010), pp. 41-53.

Related Work (OR Function)

Noisy boolean decision trees

- Computation of boolean functions in the presence of noise
- $\Omega(n \log n)$ queries are necessary when querying strategy is non-adaptive¹²³
- $\mathcal{O}(n)$ queries are sufficient when querying strategy is adaptive using a tournament algorithm⁴

Multi-armed bandits

- Evaluating OR function of n bits is the same as evaluating their maximum.
- Best arm identification problem
- Reward is Bern(p) when bit is 0, and Bern(1-p) when bit is 1
- $\mathcal{O}\left(\frac{n\log(1/\delta)}{(1-2\rho)^2}\right)$ queries are sufficient⁵

⁴U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.

⁵J.-Y. Audibert, S. Bubeck, and R. Munos. "Best arm identification in multi-armed bandits.". In: COLT (2010), pp. 41-53.

¹R. L. Dobrushin and S. I. Ortyukov. "Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements". In: Problemy Peredachi Informatsii 13.1 (1977), pp. 82–89.

²N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. "On a lower bound for the redundancy of reliable networks with noisy gates". In: IEEE Trans. Inf. Theory 37.3 (1991), pp. 639–643.

³ P. Gács and A. Gál. "Lower bounds for the complexity of reliable Boolean circuits with noisy gates". In: *IEEE Trans. Inf. Theory* 40.2 (1994), pp. 579–583.

Related Work (OR Function)

Noisy boolean decision trees

- Computation of boolean functions in the presence of noise
- $\Omega(n \log n)$ queries are necessary when querying strategy is non-adaptive¹²³
- $\mathcal{O}(n)$ queries are sufficient when querying strategy is adaptive using a tournament algorithm⁴

Multi-armed bandits

- Evaluating OR function of n bits is the same as evaluating their maximum.
- Best arm identification problem
- Reward is Bern(p) when bit is 0, and Bern(1-p) when bit is 1
- $\mathcal{O}\left(\frac{n\log(1/\delta)}{(1-2p)^2}\right)$ queries are sufficient⁵

Dependence on *p* is not tight in prior work.

⁴U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.

⁵J.-Y. Audibert, S. Bubeck, and R. Munos. "Best arm identification in multi-armed bandits.". In: COLT (2010), pp. 41-53.

Noisy Computing

¹R. L. Dobrushin and S. I. Ortyukov. "Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements". In: Problemy Peredachi Informatsii 13.1 (1977), pp. 82–89.

²N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. "On a lower bound for the redundancy of reliable networks with noisy gates". In: IEEE Trans. Inf. Theory 37.3 (1991), pp. 639–643.

³ P. Gács and A. Gál. "Lower bounds for the complexity of reliable Boolean circuits with noisy gates". In: *IEEE Trans. Inf. Theory* 40.2 (1994), pp. 579–583.

Main Result

Theorem 1 (OR function)

It is both sufficient and necessary to use

$$(1\pm o(1))rac{n\lograc{1}{\delta}}{D_{\mathsf{KL}}(p\|1-p)}$$

queries in expectation to compute OR function with vanishing error probability $\delta = o(1)$.

• $D_{KL}(p||1-p)$: Kullback-Leibler (KL) divergence between Bern(p) and Bern(1-p)

5/15

Main Result

Theorem 1 (OR function)

It is both sufficient and necessary to use

$$(1\pm o(1))rac{n\lograc{1}{ar{\delta}}}{D_{\mathsf{KL}}(p\|1-p)}$$

queries in expectation to compute OR function with vanishing error probability $\delta = o(1)$.

- $D_{KL}(p||1-p)$: Kullback-Leibler (KL) divergence between Bern(p) and Bern(1-p)
- Lower bound: Based on Le Cam's two point method
- Upper bound: Devise an adaptive querying strategy to compute the OR function

Lemma (Le Cam's Two Point Lemma)

Let $(P_x)_{x \in \mathcal{X}}$ be a family of distributions, and let $\ell : \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_+$ be any loss function. Let $x_1, x_2 \in \mathcal{X}$ satisfy that

$$\ell(x_1, \hat{x}) + \ell(x_2, \hat{x}) \ge \Delta, \qquad \forall \, \hat{x} \in \hat{\mathcal{X}}.$$

Then,

$$\inf_{\hat{x}} \sup_{x \in \mathcal{X}} E_{x}[\ell(x, \hat{x})] \geq \frac{\Delta}{2} \left(1 - \| P_{x_{1}} - P_{x_{2}} \|_{TV} \right)$$

Lemma (Le Cam's Two Point Lemma)

Let $(P_x)_{x \in \mathcal{X}}$ be a family of distributions, and let $\ell : \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}_+$ be any loss function. Let $x_1, x_2 \in \mathcal{X}$ satisfy that

$$\ell(x_1, \hat{x}) + \ell(x_2, \hat{x}) \ge \Delta, \qquad \forall \, \hat{x} \in \hat{\mathcal{X}}.$$

Then,

$$\inf_{\hat{x}} \sup_{x \in \mathcal{X}} E_{x}[\ell(x, \hat{x})] \geq \frac{\Delta}{2} (1 - \|P_{x_{1}} - P_{x_{2}}\|_{TV})$$

• For computing the OR function, use $\mathcal{X} = \{0,1\}^n$, $\hat{\mathcal{X}} = \{0,1\}$ and

$$\ell(\mathbf{x}, \hat{x}) = \mathbb{1}\{\mathsf{OR}(\mathbf{x}) \neq \hat{x}\},\$$

and P_x is the distribution of observations when the underlying sequence is x.

- Consider length-*n* sequences:
 - $\mathbf{x}_0 \triangleq$ all-zero sequence,
 - $\mathbf{x}_i \triangleq 1$ in *j*th position, and zeros everywhere else.
- For any $\hat{x} \in \{0,1\}$,

 $\mathbb{1}\{\mathsf{OR}(\mathbf{x}_0)\neq \hat{x}\}+\mathbb{1}\{\mathsf{OR}(\mathbf{x}_j)\neq \hat{x}\}\geq 1$

- Consider length-*n* sequences:
 - $\mathbf{x}_0 \triangleq$ all-zero sequence,
 - $\mathbf{x}_i \triangleq 1$ in *j*th position, and zeros everywhere else.
- For any $\hat{x} \in \{0,1\}$,

$$\mathbb{1}\{\mathsf{OR}(\mathsf{x}_0)\neq \hat{x}\}+\mathbb{1}\{\mathsf{OR}(\mathsf{x}_j)\neq \hat{x}\}\geq 1$$

• Le Cam's two point lemma implies

$$\inf_{\hat{x}} \sup_{\mathbf{x} \in \{0,1\}^n} \mathsf{P}(\hat{x} \neq \mathsf{OR}(\mathbf{x})) \geq \frac{1}{2} \left(1 - \| \mathcal{P}_{\mathbf{x}_0} - \mathcal{P}_{\mathbf{x}_j} \|_{\mathcal{T}V} \right)$$

- Consider length-*n* sequences:
 - $\mathbf{x}_0 \triangleq$ all-zero sequence,
 - $\mathbf{x}_j \triangleq 1$ in *j*th position, and zeros everywhere else.
- For any $\hat{x} \in \{0,1\}$,

$$\mathbb{1}\{\mathsf{OR}(\mathsf{x}_0)\neq \hat{x}\}+\mathbb{1}\{\mathsf{OR}(\mathsf{x}_j)\neq \hat{x}\}\geq 1$$

• Le Cam's two point lemma implies

$$\begin{split} \inf_{\hat{x}} \sup_{\mathbf{x} \in \{0,1\}^n} \mathsf{P}(\hat{x} \neq \mathsf{OR}(\mathbf{x})) \geq \frac{1}{2} \left(1 - \| P_{\mathbf{x}_0} - P_{\mathbf{x}_j} \|_{TV} \right) \\ & \stackrel{(a)}{\geq} \frac{1}{4} \exp\left(-D_{\mathsf{KL}}(P_{\mathbf{x}_0}, P_{\mathbf{x}_j}) \right) \end{split}$$

where:

• (a): Bretagnolle-Huber inequality

- Consider length-*n* sequences:
 - $\mathbf{x}_0 \triangleq$ all-zero sequence,
 - $\mathbf{x}_i \triangleq 1$ in *j*th position, and zeros everywhere else.
- For any $\hat{x} \in \{0,1\}$,

$$\mathbb{1}\{\mathsf{OR}(\mathsf{x}_0)\neq \hat{x}\}+\mathbb{1}\{\mathsf{OR}(\mathsf{x}_j)\neq \hat{x}\}\geq 1$$

• Le Cam's two point lemma implies

$$\inf_{\hat{x}} \sup_{\mathbf{x} \in \{0,1\}^n} \mathsf{P}(\hat{x} \neq \mathsf{OR}(\mathbf{x})) \geq \frac{1}{2} \left(1 - \| P_{\mathbf{x}_0} - P_{\mathbf{x}_j} \|_{TV} \right) \\ \stackrel{(a)}{\geq} \frac{1}{4} \exp\left(-D_{\mathsf{KL}}(P_{\mathbf{x}_0}, P_{\mathbf{x}_j}) \right) \\ \stackrel{(b)}{=} \frac{1}{4} \exp\left(-\mathsf{E}_{\mathbf{x}_0}[T_j] D_{\mathsf{KL}}(p \| 1 - p) \right),$$

where:

- (a): Bretagnolle-Huber inequality
- (b): Divergence decomposition (T_j is the number of times bit j is queried)

Recall

$$\inf_{\hat{x}} \sup_{\mathbf{x} \in \{0,1\}^n} \mathsf{P}(\hat{x} \neq \mathsf{OR}(\mathbf{x})) \geq \frac{1}{4} \exp\left(-\mathsf{E}_{\mathsf{x}_0}[\mathcal{T}_j]D_{\mathsf{KL}}(\boldsymbol{p} \| 1 - \boldsymbol{p})\right),$$

where T_j is the number of times bit j is queried.

• Bound holds for each *j*.

Recall

$$\inf_{\hat{x}} \sup_{\mathbf{x} \in \{0,1\}^n} \mathsf{P}(\hat{x} \neq \mathsf{OR}(\mathbf{x})) \geq \frac{1}{4} \exp\left(-\mathsf{E}_{\mathbf{x}_0}[\mathcal{T}_j]D_{\mathsf{KL}}(\boldsymbol{p} \| 1 - \boldsymbol{p})\right),$$

where T_j is the number of times bit j is queried.

• Bound holds for each *j*.

• Since $\sum_{j=1}^{n} E_{x_0}[T_j] \leq T$, there must exist j^* s.t. $E_{x_0}[T_{j^*}] \leq T/n$. Thus,

$$\inf_{\hat{x}} \sup_{\mathbf{x} \in \{0,1\}^n} \mathsf{P}(\hat{x} \neq \mathsf{OR}(\mathbf{x})) \geq \frac{1}{4} \exp\left(-\frac{T \cdot D_{\mathsf{KL}}(p\|1-p)}{n}\right),$$

which gives the lower bound.

- Proposed NoisyOR algorithm uses two subroutines:
 - ESTIMATESINGLEBIT: estimates the value of a single bit using noisy queries
 - TOURNAMENTOR: existing algorithm that computes the OR function

- Proposed NoisyOR algorithm uses two subroutines:
 - ESTIMATESINGLEBIT: estimates the value of a single bit using noisy queries
 - TOURNAMENTOR: existing algorithm that computes the OR function

Algorithm 1 ESTIMATESINGLEBIT

Input: Single bit *x*, error probability δ . **Output**: Estimate of *x*.

- 1: Set $t \leftarrow 1$.
- 2: while true do
- 3: Make noisy observation y_t of bit x.
- 4: Set $\alpha \leftarrow \mathsf{P}(X = 1 | Y^t = y^t)$.
- 5: Set $t \leftarrow t+1$.
- 6: **if** $\alpha \geq 1 \delta$ then return 1.
- 7: else if $\alpha \leq \delta$ then return 0.

- Proposed NoisyOR algorithm uses two subroutines:
 - ESTIMATESINGLEBIT: estimates the value of a single bit using noisy queries
 - TOURNAMENTOR: existing algorithm that computes the OR function

Algorithm 1 ESTIMATESINGLEBIT

Input: Single bit *x*, error probability δ . **Output**: Estimate of *x*.

- 1: Set $t \leftarrow 1$.
- 2: while true do
- 3: Make noisy observation y_t of bit x.
- 4: Set $\alpha \leftarrow \mathsf{P}(X = 1 | Y^t = y^t)$.
- 5: Set $t \leftarrow t+1$.
- 6: **if** $\alpha \geq 1 \delta$ then return 1.
- 7: else if $\alpha \leq \delta$ then return 0.
 - $\bullet~{\rm ESTIMATESINGLEBIT}$ has error probability at most δ and uses at most

$$(1+o(1))rac{\log(1/\delta)}{D_{\mathsf{KL}}(p\|1-p)}$$

queries in expectation.

⁶ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
⁷ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
⁷B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018. ⁷B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018. ⁷B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018. ⁷B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018. ⁷ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018. ⁷ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

⁶ U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018. ⁷ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

• TOURNAMENTOR: existing algorithm that computes the OR function⁶⁷

• TOURNAMENTOR has error probability at most δ and uses at most $\mathcal{O}(n)$ queries.

⁶U. Feige, P. Raghavan, D. Peleg, and E. Upfal. "Computing with Noisy Information". In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.

⁷ B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

• Proposed NoisyOR algorithm

Algorithm 2 NOISYOR

```
Input: Bit sequence \mathbf{x} = (x_1, \dots, x_n), error probability \delta.
Output: Estimate of OR(x).
 1: Set \mathbf{y} \leftarrow \emptyset.
 2: for i \in [n] do
         if ESTIMATESINGLEBIT(x_i, \delta/2) = 1 then
 3.
              Append x_i to y.
 4:
 5: if length(\mathbf{y}) = 0 then
         return 0.
 6.
 7: else if length(y) \geq \max(\log n, n\delta \log \frac{1}{\delta}) then
         return 1.
 8:
 9. else
         return TOURNAMENTOR(y, \delta/2)
10:
```

• Proposed NoisyOR algorithm

Algorithm 2 NOISYOR

```
Input: Bit sequence \mathbf{x} = (x_1, \dots, x_n), error probability \delta.
Output: Estimate of OR(x).
 1: Set \mathbf{y} \leftarrow \emptyset.
 2: for i \in [n] do
         if ESTIMATESINGLEBIT(x_i, \delta/2) = 1 then
 3.
             Append x_i to y.
 4:
 5: if length(\mathbf{y}) = 0 then
         return 0.
 6.
 7: else if length(y) \geq \max(\log n, n\delta \log \frac{1}{\delta}) then
         return 1.
 8:
 9. else
         return TOURNAMENTOR(y, \delta/2)
10:
```

• Proposed NoisyOR algorithm

Algorithm 2 NOISYOR

```
Input: Bit sequence \mathbf{x} = (x_1, \dots, x_n), error probability \delta.
Output: Estimate of OR(x).
 1: Set \mathbf{y} \leftarrow \emptyset.
 2: for i \in [n] do
         if ESTIMATESINGLEBIT(x_i, \delta/2) = 1 then
 3.
              Append x_i to y.
 4:
 5: if length(\mathbf{y}) = 0 then
         return 0.
 6.
 7: else if length(y) \geq \max(\log n, n\delta \log \frac{1}{\delta}) then
         return 1.
 8:
 9. else
         return TOURNAMENTOR(y, \delta/2)
10:
```

• Proposed NoisyOR algorithm

Algorithm 2 NOISYOR

```
Input: Bit sequence \mathbf{x} = (x_1, \ldots, x_n), error probability \delta.
Output: Estimate of OR(x).
 1: Set \mathbf{y} \leftarrow \emptyset.
 2: for i \in [n] do
         if ESTIMATESINGLEBIT(x_i, \delta/2) = 1 then
 3.
              Append x_i to y.
 4:
 5: if length(\mathbf{y}) = 0 then
         return 0.
 6·
 7: else if length(y) \geq \max(\log n, n\delta \log \frac{1}{\delta}) then
         return 1.
 8:
 9. else
         return TOURNAMENTOR(y, \delta/2)
10:
```

• NOISYOR has error probability at most δ and uses at most

$$(1+o(1))rac{n\log(1/\delta)}{D_{ extsf{KL}}(p\|1-p)}$$

queries in expectation.

nadim.ghaddar@utoronto.ca

Numerical Experiments

Beyond the OR Function (1/2)

• Threshold function: For $\mathbf{x} \in \{0, 1\}^n$,

$$\mathsf{TH}_k(\mathbf{x}) \triangleq egin{cases} 1 & ext{if } \sum_{i=1}^n x_i \geq k, \\ 0 & ext{otherwise.} \end{cases}$$

Notice that $OR(\mathbf{x}) = TH_1(\mathbf{x})$.

Theorem 2 (TH $_k$ function)

For k = o(n), it is both sufficient and necessary to use

$$(1\pm o(1))rac{n\lograc{{\sf k}}{\overline{\delta}}}{D_{{\sf K}{\sf L}}(p\|1-p)}$$

queries in expectation to compute TH_k with a vanishing error probability $\delta = o(1)$.

Beyond the OR Function (2/2)

- Noisy Comparison Model: When $\mathbf{x} \in \mathbb{R}^n$,
 - At kth time step, query $(U_k, V_k) \triangleq (x_i, x_j)$ for $i \neq j$.
 - Receive noisy response $Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k$, where $Z_k \sim \text{Bern}(p)$.

⁸Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. *Noisy Sorting Capacity*. 2023. arXiv: 2202.01446.

⁹Y. Gu and Y. Xu. "Optimal Bounds for Noisy Sorting". In: STOC 2023, 1502–1515.

Beyond the OR Function (2/2)

• Noisy Comparison Model: When $\mathbf{x} \in \mathbb{R}^n$,

- At kth time step, query $(U_k, V_k) \triangleq (x_i, x_j)$ for $i \neq j$.
- Receive noisy response $Y_k = \mathbb{1}_{\{U_k < V_k\}} \oplus Z_k$, where $Z_k \sim \text{Bern}(p)$.

Function	Description	Optimal Query complexity $(\delta=o(1))$
MAX	Returns index of max- imum element	$\frac{n\log\frac{1}{\delta}}{D_{KL}(p\ 1-p)}$
SEARCH	Takes w as input and returns i s.t. $x_i < w < x_{i+1}$ (x is sorted)	$\frac{\log n}{1-H(p)}$
SORT ⁸⁹	Sorts x	$\left[\frac{1}{1-H(p)}+\frac{1}{D_{KL}(p\ 1-p)}\right]n\log n$

14/15

⁸Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. Noisy Sorting Capacity. 2023. arXiv: 2202.01446.

⁹Y. Gu and Y. Xu. "Optimal Bounds for Noisy Sorting". In: STOC 2023, 1502–1515.

Final Remarks

- Optimal bounds for noisy computing: OR, TH_k, MAX, SEARCH, SORT functions
- Extensions:
 - General channel models
 - Different performance metric
 - Unknown p and/or query-dependent p
- Arxiv version: https://arxiv.org/abs/2309.03986
- Any questions?