
Optimal Bounds for Noisy Computing

Nadim Ghaddar

University of Toronto

Joint work with Ziao Wang, Banghua Zhu, and Lele Wang

Banff International Research Station (BIRS) Workshop
Banff, Canada

March 11, 2024



Motivation

Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x1, . . . , xn

x1

Controller

x2 xn

Controller adaptively probes one of the sensors to make a measurement.

Goal: Compute a function f (x1, . . . , xn) from noisy measurements

Applications
Fault tolerance
Active ranking
Recommendation systems
· · ·

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 2 / 15



Motivation

Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x1, . . . , xn

x1

Controller

x2 xn

Controller adaptively probes one of the sensors to make a measurement.

Goal: Compute a function f (x1, . . . , xn) from noisy measurements

Applications
Fault tolerance
Active ranking
Recommendation systems
· · ·

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 2 / 15



Motivation

Computing in the presence of noise

E.g. n sensors make noisy measurements of signals x1, . . . , xn

x1

Controller

x2 xn

Controller adaptively probes one of the sensors to make a measurement.

Goal: Compute a function f (x1, . . . , xn) from noisy measurements

Applications
Fault tolerance
Active ranking
Recommendation systems
· · ·

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 2 / 15



Problem Statement (OR Function)

Let x = (x1, . . . , xn) ∈ {0, 1}n.
OR function:

OR(x) =

{
1, if ∃ i ∈ [n] : xi = 1

0, otherwise.

Goal: Find an estimate of OR(x) using noisy readings.

At kth time step, submit query Uk = xi for some i ∈ [n].
Receive noisy response

Yk = Uk ⊕ Zk ,

where Zk ∼ Bern(p), for some fixed and known p < 1/2.

After T queries, compute estimate ÔR of OR(x).

Question: How many queries are needed to find ÔR s.t.

sup
x

P(ÔR ̸= OR(x)) ≤ δ?

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 3 / 15



Problem Statement (OR Function)

Let x = (x1, . . . , xn) ∈ {0, 1}n.
OR function:

OR(x) =

{
1, if ∃ i ∈ [n] : xi = 1

0, otherwise.

Goal: Find an estimate of OR(x) using noisy readings.
At kth time step, submit query Uk = xi for some i ∈ [n].
Receive noisy response

Yk = Uk ⊕ Zk ,

where Zk ∼ Bern(p), for some fixed and known p < 1/2.

After T queries, compute estimate ÔR of OR(x).

Question: How many queries are needed to find ÔR s.t.

sup
x

P(ÔR ̸= OR(x)) ≤ δ?

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 3 / 15



Problem Statement (OR Function)

Let x = (x1, . . . , xn) ∈ {0, 1}n.
OR function:

OR(x) =

{
1, if ∃ i ∈ [n] : xi = 1

0, otherwise.

Goal: Find an estimate of OR(x) using noisy readings.
At kth time step, submit query Uk = xi for some i ∈ [n].
Receive noisy response

Yk = Uk ⊕ Zk ,

where Zk ∼ Bern(p), for some fixed and known p < 1/2.

After T queries, compute estimate ÔR of OR(x).

Question: How many queries are needed to find ÔR s.t.

sup
x

P(ÔR ̸= OR(x)) ≤ δ?

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 3 / 15



Related Work (OR Function)

Noisy boolean decision trees
Computation of boolean functions in the presence of noise
Ω(n log n) queries are necessary when querying strategy is non-adaptive123

O(n) queries are sufficient when querying strategy is adaptive using a tournament
algorithm4

Multi-armed bandits
Evaluating OR function of n bits is the same as evaluating their maximum.
Best arm identification problem
Reward is Bern(p) when bit is 0, and Bern(1− p) when bit is 1

O
(

n log(1/δ)

(1−2p)2

)
queries are sufficient5

Dependence on p is not tight in prior work.

1R. L. Dobrushin and S. I. Ortyukov. “Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements”. In: Problemy
Peredachi Informatsii 13.1 (1977), pp. 82–89.

2N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. “On a lower bound for the redundancy of reliable networks with noisy gates”. In: IEEE Trans. Inf.
Theory 37.3 (1991), pp. 639–643.

3P. Gács and A. Gál. “Lower bounds for the complexity of reliable Boolean circuits with noisy gates”. In: IEEE Trans. Inf. Theory 40.2 (1994),
pp. 579–583.

4U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
5J.-Y. Audibert, S. Bubeck, and R. Munos. “Best arm identification in multi-armed bandits.”. In: COLT (2010), pp. 41–53.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 4 / 15



Related Work (OR Function)

Noisy boolean decision trees
Computation of boolean functions in the presence of noise
Ω(n log n) queries are necessary when querying strategy is non-adaptive123

O(n) queries are sufficient when querying strategy is adaptive using a tournament
algorithm4

Multi-armed bandits
Evaluating OR function of n bits is the same as evaluating their maximum.
Best arm identification problem
Reward is Bern(p) when bit is 0, and Bern(1− p) when bit is 1

O
(

n log(1/δ)

(1−2p)2

)
queries are sufficient5

Dependence on p is not tight in prior work.

1R. L. Dobrushin and S. I. Ortyukov. “Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements”. In: Problemy
Peredachi Informatsii 13.1 (1977), pp. 82–89.

2N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. “On a lower bound for the redundancy of reliable networks with noisy gates”. In: IEEE Trans. Inf.
Theory 37.3 (1991), pp. 639–643.

3P. Gács and A. Gál. “Lower bounds for the complexity of reliable Boolean circuits with noisy gates”. In: IEEE Trans. Inf. Theory 40.2 (1994),
pp. 579–583.

4U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
5J.-Y. Audibert, S. Bubeck, and R. Munos. “Best arm identification in multi-armed bandits.”. In: COLT (2010), pp. 41–53.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 4 / 15



Related Work (OR Function)

Noisy boolean decision trees
Computation of boolean functions in the presence of noise
Ω(n log n) queries are necessary when querying strategy is non-adaptive123

O(n) queries are sufficient when querying strategy is adaptive using a tournament
algorithm4

Multi-armed bandits
Evaluating OR function of n bits is the same as evaluating their maximum.
Best arm identification problem
Reward is Bern(p) when bit is 0, and Bern(1− p) when bit is 1

O
(

n log(1/δ)

(1−2p)2

)
queries are sufficient5

Dependence on p is not tight in prior work.

1R. L. Dobrushin and S. I. Ortyukov. “Lower bound for the redundancy of self-correcting arrangements of unreliable functional elements”. In: Problemy
Peredachi Informatsii 13.1 (1977), pp. 82–89.

2N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis. “On a lower bound for the redundancy of reliable networks with noisy gates”. In: IEEE Trans. Inf.
Theory 37.3 (1991), pp. 639–643.

3P. Gács and A. Gál. “Lower bounds for the complexity of reliable Boolean circuits with noisy gates”. In: IEEE Trans. Inf. Theory 40.2 (1994),
pp. 579–583.

4U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
5J.-Y. Audibert, S. Bubeck, and R. Munos. “Best arm identification in multi-armed bandits.”. In: COLT (2010), pp. 41–53.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 4 / 15



Main Result

Theorem 1 (OR function)

It is both sufficient and necessary to use

(1± o(1))
n log 1

δ

DKL(p∥1− p)

queries in expectation to compute OR function with vanishing error probability δ = o(1).

DKL(p∥1− p): Kullback-Leibler (KL) divergence between Bern(p) and Bern(1− p)

Lower bound: Based on Le Cam’s two point method

Upper bound: Devise an adaptive querying strategy to compute the OR function

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 5 / 15



Main Result

Theorem 1 (OR function)

It is both sufficient and necessary to use

(1± o(1))
n log 1

δ

DKL(p∥1− p)

queries in expectation to compute OR function with vanishing error probability δ = o(1).

DKL(p∥1− p): Kullback-Leibler (KL) divergence between Bern(p) and Bern(1− p)

Lower bound: Based on Le Cam’s two point method

Upper bound: Devise an adaptive querying strategy to compute the OR function

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 5 / 15



Lower Bound: Le Cam’s Two Point Method (1/3)

Lemma (Le Cam’s Two Point Lemma)

Let (Px)x∈X be a family of distributions, and let ℓ : X × X̂ → R+ be any loss function.
Let x1, x2 ∈ X satisfy that

ℓ(x1, x̂) + ℓ(x2, x̂) ≥ ∆, ∀ x̂ ∈ X̂ .

Then,

inf
x̂

sup
x∈X

Ex [ℓ(x , x̂)] ≥
∆

2
(1− ∥Px1 −Px2 ∥TV )

For computing the OR function, use X = {0, 1}n, X̂ = {0, 1} and

ℓ(x, x̂) = 1{OR(x) ̸= x̂},

and Px is the distribution of observations when the underlying sequence is x.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 6 / 15



Lower Bound: Le Cam’s Two Point Method (1/3)

Lemma (Le Cam’s Two Point Lemma)

Let (Px)x∈X be a family of distributions, and let ℓ : X × X̂ → R+ be any loss function.
Let x1, x2 ∈ X satisfy that

ℓ(x1, x̂) + ℓ(x2, x̂) ≥ ∆, ∀ x̂ ∈ X̂ .

Then,

inf
x̂

sup
x∈X

Ex [ℓ(x , x̂)] ≥
∆

2
(1− ∥Px1 −Px2 ∥TV )

For computing the OR function, use X = {0, 1}n, X̂ = {0, 1} and

ℓ(x, x̂) = 1{OR(x) ̸= x̂},

and Px is the distribution of observations when the underlying sequence is x.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 6 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)

(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)

(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)
(a)

≥ 1

4
exp

(
−DKL(Px0 ,Pxj )

)

(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where:

(a): Bretagnolle-Huber inequality

(b): Divergence decomposition (Tj is the number of times bit j is queried)

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (2/3)

Consider length-n sequences:

x0 ≜ all-zero sequence,
xj ≜ 1 in jth position, and zeros everywhere else.

For any x̂ ∈ {0, 1},

1{OR(x0) ̸= x̂}+ 1{OR(xj) ̸= x̂} ≥ 1

Le Cam’s two point lemma implies

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

2

(
1− ∥Px0 − Pxj ∥TV

)
(a)

≥ 1

4
exp

(
−DKL(Px0 ,Pxj )

)
(b)
=

1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where:

(a): Bretagnolle-Huber inequality

(b): Divergence decomposition (Tj is the number of times bit j is queried)

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 7 / 15



Lower Bound: Le Cam’s Two Point Method (3/3)

Recall

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where Tj is the number of times bit j is queried.

Bound holds for each j .

Since
∑n

j=1 Ex0 [Tj ] ≤ T , there must exist j∗ s.t. Ex0 [Tj∗ ] ≤ T/n. Thus,

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

4
exp

(
−T · DKL(p∥1− p)

n

)
,

which gives the lower bound.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 8 / 15



Lower Bound: Le Cam’s Two Point Method (3/3)

Recall

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

4
exp (−Ex0 [Tj ]DKL(p∥1− p)) ,

where Tj is the number of times bit j is queried.

Bound holds for each j .

Since
∑n

j=1 Ex0 [Tj ] ≤ T , there must exist j∗ s.t. Ex0 [Tj∗ ] ≤ T/n. Thus,

inf
x̂

sup
x∈{0,1}n

P(x̂ ̸= OR(x)) ≥ 1

4
exp

(
−T · DKL(p∥1− p)

n

)
,

which gives the lower bound.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 8 / 15



Upper Bound: Proposed NoisyOR Algorithm (1/3)

Proposed NoisyOR algorithm uses two subroutines:
EstimateSingleBit: estimates the value of a single bit using noisy queries
TournamentOR: existing algorithm that computes the OR function

Algorithm 1 EstimateSingleBit

Input: Single bit x , error probability δ.
Output: Estimate of x .

1: Set t ← 1.
2: while true do
3: Make noisy observation yt of bit x .
4: Set α← P(X = 1 |Y t = y t).
5: Set t ← t + 1.
6: if α ≥ 1− δ then return 1.
7: else if α ≤ δ then return 0.

EstimateSingleBit has error probability at most δ and uses at most

(1 + o(1))
log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 9 / 15



Upper Bound: Proposed NoisyOR Algorithm (1/3)

Proposed NoisyOR algorithm uses two subroutines:
EstimateSingleBit: estimates the value of a single bit using noisy queries
TournamentOR: existing algorithm that computes the OR function

Algorithm 1 EstimateSingleBit

Input: Single bit x , error probability δ.
Output: Estimate of x .

1: Set t ← 1.
2: while true do
3: Make noisy observation yt of bit x .
4: Set α← P(X = 1 |Y t = y t).
5: Set t ← t + 1.
6: if α ≥ 1− δ then return 1.
7: else if α ≤ δ then return 0.

EstimateSingleBit has error probability at most δ and uses at most

(1 + o(1))
log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 9 / 15



Upper Bound: Proposed NoisyOR Algorithm (1/3)

Proposed NoisyOR algorithm uses two subroutines:
EstimateSingleBit: estimates the value of a single bit using noisy queries
TournamentOR: existing algorithm that computes the OR function

Algorithm 1 EstimateSingleBit

Input: Single bit x , error probability δ.
Output: Estimate of x .

1: Set t ← 1.
2: while true do
3: Make noisy observation yt of bit x .
4: Set α← P(X = 1 |Y t = y t).
5: Set t ← t + 1.
6: if α ≥ 1− δ then return 1.
7: else if α ≤ δ then return 0.

EstimateSingleBit has error probability at most δ and uses at most

(1 + o(1))
log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 9 / 15



Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ
x1

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ
x1

x3 = 0

w.p. 1 − δ
x4

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ
x1

x3 = 0

w.p. 1 − δ
x4

xn−1 = 0

w.p. 1 − δ
xn

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ
x1

x3 = 0

w.p. 1 − δ
x4

xn−1 = 0

w.p. 1 − δ
xn

x1 = 1

w.p. 1 − δ x1

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ
x1

x3 = 0

w.p. 1 − δ
x4

xn−1 = 0

w.p. 1 − δ
xn

x1 = 1

w.p. 1 − δ x1

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ2

x1

x3 = 0

w.p. 1 − δ2

x4

xn−1 = 0

w.p. 1 − δ2

xn

x1 = 1

w.p. 1 − δ4 x1

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (2/3)

TournamentOR: existing algorithm that computes the OR function67

x1 x2 x3 x4 xn−1 xn

x1 = 1

w.p. 1 − δ2

x1

x3 = 0

w.p. 1 − δ2

x4

xn−1 = 0

w.p. 1 − δ2

xn

x1 = 1

w.p. 1 − δ4 x1

TournamentOR has error probability at most δ and uses at most O(n) queries.

6U. Feige, P. Raghavan, D. Peleg, and E. Upfal. “Computing with Noisy Information”. In: SIAM J. Comput. 23.5 (1994), pp. 1001–1018.
7B. Zhu, Z. Wang, N. Ghaddar, J. Jiao, and L. Wang. On the Optimal Bounds for Noisy Computing. 2023. arXiv: 2306.11951.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 10 / 15

https://arxiv.org/abs/2306.11951


Upper Bound: Proposed NoisyOR Algorithm (3/3)

Proposed NoisyOR algorithm

Algorithm 2 NoisyOR

Input: Bit sequence x = (x1, . . . , xn), error probability δ.
Output: Estimate of OR(x).

1: Set y← ∅.
2: for i ∈ [n] do
3: if EstimateSingleBit(xi , δ/2) = 1 then
4: Append xi to y.

5: if length(y) = 0 then
6: return 0.
7: else if length(y) ≥ max(log n, nδ log 1

δ
) then

8: return 1.
9: else

10: return TournamentOR(y, δ/2)

NoisyOR has error probability at most δ and uses at most

(1 + o(1))
n log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 11 / 15



Upper Bound: Proposed NoisyOR Algorithm (3/3)

Proposed NoisyOR algorithm

Algorithm 2 NoisyOR

Input: Bit sequence x = (x1, . . . , xn), error probability δ.
Output: Estimate of OR(x).

1: Set y← ∅.
2: for i ∈ [n] do
3: if EstimateSingleBit(xi , δ/2) = 1 then
4: Append xi to y.

5: if length(y) = 0 then
6: return 0.
7: else if length(y) ≥ max(log n, nδ log 1

δ
) then

8: return 1.
9: else

10: return TournamentOR(y, δ/2)

NoisyOR has error probability at most δ and uses at most

(1 + o(1))
n log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 11 / 15



Upper Bound: Proposed NoisyOR Algorithm (3/3)

Proposed NoisyOR algorithm

Algorithm 2 NoisyOR

Input: Bit sequence x = (x1, . . . , xn), error probability δ.
Output: Estimate of OR(x).

1: Set y← ∅.
2: for i ∈ [n] do
3: if EstimateSingleBit(xi , δ/2) = 1 then
4: Append xi to y.

5: if length(y) = 0 then
6: return 0.
7: else if length(y) ≥ max(log n, nδ log 1

δ
) then

8: return 1.
9: else

10: return TournamentOR(y, δ/2)

NoisyOR has error probability at most δ and uses at most

(1 + o(1))
n log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 11 / 15



Upper Bound: Proposed NoisyOR Algorithm (3/3)

Proposed NoisyOR algorithm

Algorithm 2 NoisyOR

Input: Bit sequence x = (x1, . . . , xn), error probability δ.
Output: Estimate of OR(x).

1: Set y← ∅.
2: for i ∈ [n] do
3: if EstimateSingleBit(xi , δ/2) = 1 then
4: Append xi to y.

5: if length(y) = 0 then
6: return 0.
7: else if length(y) ≥ max(log n, nδ log 1

δ
) then

8: return 1.
9: else

10: return TournamentOR(y, δ/2)

NoisyOR has error probability at most δ and uses at most

(1 + o(1))
n log(1/δ)

DKL(p∥1− p)

queries in expectation.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 11 / 15



Numerical Experiments

0 0.05 0.1 0.15 0.2 0.25

Crossover probability p

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
E

xp
ec

te
d

 n
u

m
b

er
 o

f 
q

u
er

ie
s

OR function, n = 100, delta = 0.01

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 12 / 15



Beyond the OR Function (1/2)

Threshold function: For x ∈ {0, 1}n,

THk(x) ≜

{
1 if

∑n
i=1 xi ≥ k,

0 otherwise.

Notice that OR(x) = TH1(x).

Theorem 2 (THk function)

For k = o(n), it is both sufficient and necessary to use

(1± o(1))
n log k

δ

DKL(p∥1− p)

queries in expectation to compute THk with a vanishing error probability δ = o(1).

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 13 / 15



Beyond the OR Function (2/2)

Noisy Comparison Model: When x ∈ Rn,

At kth time step, query (Uk ,Vk ) ≜ (xi , xj ) for i ̸= j .
Receive noisy response Yk = 1{Uk<Vk} ⊕ Zk , where Zk ∼ Bern(p).

Function Description Optimal Query complexity (δ = o(1))

MAX
Returns index of max-
imum element

n log 1
δ

DKL(p∥1− p)

SEARCH
Takes w as input and
returns i s.t. xi <
w < xi+1 (x is sorted)

log n

1− H(p)

SORT89 Sorts x

[
1

1− H(p)
+

1

DKL(p∥1− p)

]
n log n

8Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. Noisy Sorting Capacity. 2023. arXiv: 2202.01446.
9Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: STOC 2023, 1502–1515.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 14 / 15

https://arxiv.org/abs/2202.01446


Beyond the OR Function (2/2)

Noisy Comparison Model: When x ∈ Rn,

At kth time step, query (Uk ,Vk ) ≜ (xi , xj ) for i ̸= j .
Receive noisy response Yk = 1{Uk<Vk} ⊕ Zk , where Zk ∼ Bern(p).

Function Description Optimal Query complexity (δ = o(1))

MAX
Returns index of max-
imum element

n log 1
δ

DKL(p∥1− p)

SEARCH
Takes w as input and
returns i s.t. xi <
w < xi+1 (x is sorted)

log n

1− H(p)

SORT89 Sorts x

[
1

1− H(p)
+

1

DKL(p∥1− p)

]
n log n

8Z. Wang, N. Ghaddar, B. Zhu, and L. Wang. Noisy Sorting Capacity. 2023. arXiv: 2202.01446.
9Y. Gu and Y. Xu. “Optimal Bounds for Noisy Sorting”. In: STOC 2023, 1502–1515.

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 14 / 15

https://arxiv.org/abs/2202.01446


Final Remarks

Optimal bounds for noisy computing: OR, THk , MAX, SEARCH, SORT functions

Extensions:
General channel models
Different performance metric
Unknown p and/or query-dependent p

Arxiv version: https://arxiv.org/abs/2309.03986

Any questions?

nadim.ghaddar@utoronto.ca Noisy Computing March 11, 2024 15 / 15

https://arxiv.org/abs/2309.03986

