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Wireless local access network, e.g., 802.11

Access point

Client

Knowledge of interference among access points (APs), useful
to set network configuration: dynamic channel assignments,
transmit power control, scheduling, etc..

Interference changes over time as environment moves
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Estimating interference among APs

Motivated by work in CS systems. Shrivastava et al. “PIE in
the sky: Online passive interference estimation for enterprise
WLANs,” USENIX Conf. Net. Sys. Design Implementation.

Earlier work injected traffic into network (active probing) to
characterize inference.
Shrivastava leveraged CSMA/CA and Ack/Nak protocols to
characterize interference

In paper, small test-bed studies only. Curious about how
scaled up to large networks.

Some analogies with a type of group testing problem.

Main contribution: Quantify the required observation time as
a function of network size and topological connectivity.

Formulated PIE as a conflict graph learning problem.
Edge set represents pairwise interference among APs.
Recover the interference graph with as few measurements as
possible.
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Direct interference 1

CSMA/CA: AP holds its transmission if channel is busy.

APs w/in carrier sensing range: Never transmit at same time.

4 / 26



Introduction Direct interferers Hidden interferers Numerical & conclusion

Direct interference 2

CSMA/CA: AP holds its transmission if channel is busy.

APs w/in carrier sensing range: Never transmit at same time.

We model carrier sensing as reciprocal (undirected graph).
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Hidden interference 1: Hidden terminal problem

Hidden: Out of carrier sensing range / shielded by obstruction
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Hidden interference 2: Hidden terminal problem

Hidden: Out of carrier sensing range / shielded by obstruction

Collisions may happen, depends on receiver’s location

Interference is asymmetric (directed graph)

Collisions can be detected through Ack/Nak mechanism
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Interference graphs: Direct and hidden

Use graph G = (V, ED , EH) to represent the interference
where V, |V| = n is the set of access points.

GD = (V, ED): Graph of direct interference among APs.

Carrier sensed since direct.
Data: Network activation pattern X ∈ {0, 1}n, 1-active,
0-inactive
Undirected graph (reciprocal sensing)

GH = (V, EH): hidden interference to another AP’s clients

When APs cannot hear each other, no direct path, e.g.,
building in way.
AP may interfere only with a subset of another AP’s clients
Data: activation pattern X ; feedback information Y ∈ {0, 1}n
where 1-Ack, 0-Nak.
Directed graph (asymmetric interference)

Objective: given k observations of X and Y , recover GD , GH .
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System model

n access points.

Synchronized time-slotted system.

In each slot, with probability p, an AP has data to send (i.i.d.
across slots)

Ni : set of direct interferers for AP i , |Ni | ≤ d

Uniform contention for channels among APs.

Si : set of hidden interferers for AP i , |Si | < s

Probability that a client associated with AP i is interfered
with by AP j , j ∈ Si , is pji ≥ pmin

Consider static channel states.
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Inferring direct interference GD

Algorithm:

If concurrent Tx from both i and j then (i , j) /∈ ED
Start from fully connected graph, gradually remove edges

Aspect of the analysis is that activation patterns not i.i.d.. across
network, the conflict graph introduces dependencies.

GD0 GD1
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Analysis and results

Lemma: In k steps Pr(ĜD 6= GD) ≤
(n
2

) (
1− p2

(d+1)2

)k
Analysis deals with dependence in activation patterns:

Bound # edges by
(
n
2

)
Pr a non-interfering pair does not simultaneously transmit in a
given slot ≤ (1− p2/(d + 1)2)

Theorem 1:

Pr(ĜD 6= GD) < δ if k ≥ 1
log 1

1−p2/(d+1)2

(
log
(
n
2

)
+ log 1

δ

)
.

k = O(d2 log n) when p2/d2 → 0.
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Minimax lower bound

Theorem 2: For any α, 0 < α < 1/8 and under some mild
conditions on d and n, if

k ≤ αd2

2 + 1
1−p

log n

then
min

ĜD∈GD
max

GD∈GD
Pr(ĜD 6= GD) > 0

.

So if k scale slower then d2 log n will have an error.

Upper bound matches lower bound up to a constant.
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Proof idea: Develop a simple family of networks

1 Pick simple, but hard-to-distinguish among, set of networks.

2 Turn into hypothesis testing problem where there are (n + 1)
graphs GD0,GD1, . . .GDn.

3 Characterize distribution of activation patterns Pi (X ) for all
i ∈ {0, 1, . . . n}.

4 DKL(P0‖Pi ) = DKL(P0‖P1) for all i ∈ [n].

5 Adapt bound from Tsybakov ’08 to lower bound hypothesis
test; also lower bounds original (more difficult) problem.

GD0 GD1 GDn

……
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Result: Adapted from Tsybakov, ’08, Thm. 2.5

Theorem: Let k ∈ Z+, M ≥ 2, {GD0, . . . ,GDM} ∈ GD be such
that

1 DL(GDi ,GDj) ≥ 2r , for 0 ≤ i < j ≤ M, where DL is the
Levenshtein (“edit”) distance.

2 k
M

∑M
i=1DKL(Pi‖P0) ≤ α logM, with 0 < α < 1/8.

Then,

inf
ĜD∈GD

sup
GD∈GD

Pr[DL(ĜD ,GD) ≥ r ;GD ]

≥ inf
ĜD∈GD

max
i

Pr[DL(ĜD ,GDi ) ≥ r ;GDi ]

≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.
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Inferring hidden interference GH : Example

• Consider AP j . At time t if the feedback Y t
j = 0 then the

transmission was unsuccessful.
• In example let set of hidden interferers be Sj = {i1, i2}

Feedback APs active in slot

Y
(1)
j = 0 {1, 2, 7, ii , 9}

Y
(2)
j = 1 (ignore)

Y
(3)
j = 0 {1, 3, 5, i2, 10}

Y
(4)
j = 0 {3, 5, ii , 8}

Note that {ii , i2} and {1, 3} both intersect all failures (and (2, 5)
does too). Can’t yet determine Sj . So, wait. . .

Feedback APs active in slot

Y
(5)
j = 0 {2, i2, 11}

Now the set Sj = {i1, i2} is the unique “minimum hitting set”
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Minimum hitting set based approach

Def: Given a collection of subsets, a set which intersects all
subsets in at least one element is called a hitting set; a minimum
hitting set is a hitting set of smallest size.

1 Given k observations define Kj(k) to be the slots in which AP
j ’s transmissions failed, i.e.,

Kj(k) = {t ∈ {1, 2, . . . , k}|Yj(t) = 0}

2 For each such failure (t ∈ Kj(k)) define Stj to be the set of
candidate hidden interferers, i.e.,.

Stj = {i ∈ V|i 6= j ,Xi (t) = 1}

3 Our estimate of Sj is the minimum hitting set

Ŝj(k) = arg min
S⊆V

{
|S|
∣∣S ∩ Stj 6= ∅ ∀ t ∈ Kj(k)

}
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Analysis

Lemma: At any k for any minimal hitting set Ŝj(k) and any i ∈ Sj ,

Pr[i /∈ Ŝj(k)] ≤
(

1− p2

(d + 1)2
pij(1− p)s

)k

p2/(d + 1)2 same as earlier – lower bound on APs i , j both
active and therefore may interfere
pij probability AP i interferes with AP j transmission
(1− p)s probability that any other candidate minimal hitting
set of hidden interferes have nothing to send in a particular
round (and so cannot interfere)

Apply union bound to get

Pr [ĜH 6= GH ] = Pr[∪j∈[n]∪i∈Sj i /∈ Ŝj(k)]

≤ ns

(
1− p2

(d + 1)2
pmin(1− p)s

)k
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Results

• Theorem 3: Let δ > 0 and let

k ≥ 1

− log
(

1− p2

(d+1)2
pmin(1− p)s

) (log(ns) + log
1

δ

)

then Pr[ĜH = GH ] > 1− δ.
• As d gets large then simplifies to

k = O

(
d2

p2(1− p)spmin
log n

)
• Min-Max lower bound (Thm 4): We also derive a min-max lower
bound that show that, as d gets large, if k scales slower than(

d2

(1−p)s−1pmin
log n

)
the probability of error will be bounded away

from zero.
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Numerical results: Direct interferers

More realistic than assumptions made in analysis:

Simulated wireless, path loss and shadowing.
Poisson packet arrival process, enqueued at APs, not i.i.d.
Grid of 50m× 50m cells, client at center, AP placed randomly
Here d = 6 direct interferers on left, and 4× 15 grid on right
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of the same order as the upper bound provided in Theorem 3.
Therefore, the bounds are tight and our hitting-set based algo-
rithm is asymptotically optimal.

IV. SIMULATION RESULTS

In this section we present simulation results with the aim
of verifying the applicability of the theory developed earlier.
We use our algorithms to infer interference graphs based on
traffic traces collected from a simulated wireless network that
operates according to the IEEE 802.11 CSMA/CA protocol. In
comparison to the statistical assumptions made to derive the
theoretical learning bounds in this paper, the simulations mimic
real-world wireless networks much more closely.

We comment on the specific differences between the fol-
lowing simulations and the assumptions made in the analyses
of Section III. First, the nodes in the simulations operate in an
asynchronous fashion instead of working synchronously. There-
fore, the synchronized session model of Assumption 1-(0) does
not hold in the simulations. Second, we introduce a queue at the
MAC layer for each AP to store data packets that haven’t yet
been delivered. A packet stays in the MAC queue until it has
been successfully received at the destination client or has been
dropped (after two retransmission attempts). Therefore, the in-
dependent traffic status assumption made in Assumption 1-(i)
does not hold. Third, the backoff time for each AP is not con-
tinuous but is an integer multiple of a slot time (20 × 10−6 s).
This means that two APs within each other’s carrier sensing
range have a (small) probability of colliding, especially when
the window length W is short. These differences break the
i.i.d. assumption regarding the joint distribution of Xi(t) and
Yi(t) across time. As we will see, despite the added complexi-
ties of this more realistic simulation environment, the behavior
we observe closely matches the quantitative predictions made
by the theory.

The specific setup for the simulations is as follows. Access
points and clients are deployed over a rectangular area that can
be partitioned into square cells 50 m on a side. An AP is placed
uniformly at random within each cell, while a client is placed at
the center of the cell. Each client is associated with the nearest
AP. We choose the network topology in this manner to ensure
the randomness of the corresponding interference graph while
still maintaining a relatively balanced traffic intensity across
the network. Because there is a single client associated with
each AP, in these simulations we are essentially evaluating the
interference between AP-client links, similar to the setup in [6].
The locations of APs and clients are fixed throughout the period
of observation.

At the MAC layer, we generates an independent downlink
traffic flow for each client according to a Poisson process of λ

packet arrivals per slot time. Packets payloads are all identical,
of 1000 bits each. We set the contention window size to be 16
slot times.

At the PHY layer, we employ the log-distance path loss
model. In this model, received power (in dB) at distance l (in
meters) from the transmitter is given by:

Γ(l) = Γ(l0) − 10η log(l/l0) + Xσ . (6)

Fig. 2. The observation duration required to recover the direct interference
graph for networks with a maximum of d = 6 direct interferers and s = 1
hidden interferer per node, plotted as a function of the number of APs in the
network.

In the above, Γ(l0) is the signal strength at the reference dis-
tance l0 from the transmitter, η is the path loss exponent, and
Xσ represents a Gaussian random variable with zero mean and
variance σ2 in dB. We choose l0 to be 1 km, σ2 to be 5 dB, and
η to be 4. We also assume that the “shadowing” (represented by
Xσ ) between any AP and AP-client pair is fixed throughout the
period of observation. Thus the underlying interference graph
is constant within the period of observation.

We fix the transmission rate to be 5 Mbps and the trans-
mission range for APs to be 37.5 m. The transmit power and
corresponding received SNR threshold are selected to ensure
successful transmissions within the transmission range.

We first study the direct interference estimation algorithm of
Section III-A. We fix the carrier sensing range for the APs to be
60 m. We vary the size of the network where the network consists
of an array of square cells. For each network size, we randomly
generate ten topologies, i.e., AP positions are randomly chosen.
For each of the ten topologies, we use our algorithm to recover
GD under different (randomly generated) traffic traces.

In Fig. 2 we report the average duration of the observa-
tion period required to recover the direct interference graph
for each network size. The average time is plotted versus
the number of APs for four different traffic intensities λ ∈
{0.002, 0.003, 0.004, 0.005}. We observe that although, as dis-
cussed above, the assumptions we adopted to derive the scaling
laws do not hold in the simulation, the duration required to iden-
tify the network scales in the predicted, sub-linear (logarithmic),
manner in network size n. This is consistent with the scaling
predicted by Theorem 1. The necessary observation time de-
creases as traffic intensity increases, also as predicted by the
theory.

In Fig. 3 we study the average observation time required to
recover the direct interference graph as a function of maximum
degree d for a fixed network size. We conduct the experiment
as follows. We fix the network size to be 4 × 15 cells and ran-
domly generate topologies (AP and client positions). For each
randomly generated topology, we vary the carrier sensing range:
25 m, 35 m, 45 m, 55 m, 65 m, 75 m. We check the maximum
degree d (the number of direct interference edges per node) for
each topology. We select ten topologies for each d varying from
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Fig. 3. The observation duration required to recover the direct interference
graph for networks composed of 4 × 15 cells, plotted as a function of d, the
maximum number of direct interferers.

Fig. 4. The observation duration required to recover the hidden interference
graph for networks with a maximum of d = 6 direct interferers and s = 1
hidden interferer per node, plotted as a function of the number of APs in the
network.

2 to 10. We then simulate the network in each case. We plot the
average observation time required to recover GD as a function
of the maximum degree d.

Fig. 3 demonstrates that in the heavy traffic regime (λ ∈
{0.008, 0.01}) the scaling is super-linear (quadratic) in d, as
predicted by the theory. However, in a lighter traffic regime
(λ = 0.006), the super-linear scaling is not obvious. The reason
for the different behavior as a function of traffic intensity is as
follows. In the heavy traffic regime the probability that a node
competes for the channel does not increase as d increase since
its queue is almost always non-empty even when the node does
not get to transmit. This makes the predicted quadratic scaling
in d easy to see. In contrast, in a sufficiently light traffic regime,
the marginal probability that a node competes for the channel
increases as d increases, due to the time-dependency of the
queue state. Since the p in Theorem 1 is now a function of d, it
essentially compensates for the quadratic scaling in d. Thus, the
super-linear (quadratic) scaling effect is not easily discernible
in this regime.

Fig. 5. The observation duration required to recover the hidden interference
graph for networks composed of 4 × 15 cells, with a maximum of d = 6 direct
interferers per node, plotted as a function of s, the maximum number of hidden
interferers per node.

In Fig. 4 we consider the hidden interference graph estimation
problem. We plot, as a function of network size, the observation
duration required to identify the minimum hitting set correctly
for each node and to recover the hidden interference graph. The
same simulation conditions hold as were described in the dis-
cussion of Fig. 2. For this algorithm we again observe that the
necessary observation duration scales sub-linearly (logarithmi-
cally) in network size n.

In Fig. 5 we examine the dependence of the necessary obser-
vation duration on s, the number of hidden interferers per node.
In these simulations we fix the network size to be 4 × 15 cells
and the carrier sensing range to be 60m. We randomly generate
topologies with fixed d = 6, and let s vary from 1 to 4. The
required observation duration is plotted as a function of s. We
see that the observation duration increases super-linearly as s
increases, which is consistent with the predictions of Theorem 3.

V. CONCLUSIONS

In this paper, we propose passive interference learning algo-
rithms and analyze their learning bounds. We first upper bound
the number of measurements required to estimate the direct in-
terference graph. Then, we provide a minimax lower bound by
constructing a sequence of networks and transforming it into
an M -ary hypothesis test. The lower bound matches the up-
per bound (up to a constant). Thus, the bound is tight and the
algorithm is asymptotically optimal. We then analyze the esti-
mation of the hidden interference graph estimation based on the
minimum hitting set algorithm. We provide matching lower and
upper bounds following an approach similar to that employed
for the direct interference graph. We also present an experimen-
tal study that lends support to the theoretical analysis.

APPENDIX

A. Proof of Theorem 1: Consider any two nonadjacent
nodes i, j in GD = (V, ED ). Let Nij = Ni ∪ Nj , and Ni\j =
Ni ∩ Nc

j .
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Numerical results: Hidden interferers

Same set-up as previous slide

s = 1 hidden interferers on left

4× 15 grid on right, variable s
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cally) in network size n.

In Fig. 5 we examine the dependence of the necessary obser-
vation duration on s, the number of hidden interferers per node.
In these simulations we fix the network size to be 4 × 15 cells
and the carrier sensing range to be 60m. We randomly generate
topologies with fixed d = 6, and let s vary from 1 to 4. The
required observation duration is plotted as a function of s. We
see that the observation duration increases super-linearly as s
increases, which is consistent with the predictions of Theorem 3.

V. CONCLUSIONS

In this paper, we propose passive interference learning algo-
rithms and analyze their learning bounds. We first upper bound
the number of measurements required to estimate the direct in-
terference graph. Then, we provide a minimax lower bound by
constructing a sequence of networks and transforming it into
an M -ary hypothesis test. The lower bound matches the up-
per bound (up to a constant). Thus, the bound is tight and the
algorithm is asymptotically optimal. We then analyze the esti-
mation of the hidden interference graph estimation based on the
minimum hitting set algorithm. We provide matching lower and
upper bounds following an approach similar to that employed
for the direct interference graph. We also present an experimen-
tal study that lends support to the theoretical analysis.

APPENDIX

A. Proof of Theorem 1: Consider any two nonadjacent
nodes i, j in GD = (V, ED ). Let Nij = Ni ∪ Nj , and Ni\j =
Ni ∩ Nc

j .
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As on previous slide, sub-linear scaling in # APs, and super-linear
in # (hidden) interferers
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Conclusions

Recap

Formulated the “passive interference estimation” approach as
a statistical learning problem
Two sub-problems: direct and indirect (hidden) interference
Developed practical algorithms and proved optimality.

Comments

Can be thought of as a type of group testing problem.. The
interferers (direct or hidden) are the “defects” to be
determined. There are multiple group testing problems in
parallel, i.e.., the set of interferers for each AP. We don’t
control the test vectors (the randomly generated activation /
feedback patterns).
Scaling in hidden interference, O(d2 log n/p2pmin(1− p)s):
has a poor constant for high traffic networks (p close to one).
We developed results for exact graph recovery, inexact may
often suffice
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