Covariance-Based Activity Detection in Cooperative Multi-Cell Massive MIMO: Scaling Law and Efficient Algorithms

Ya-Feng Liu

State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing, China Email: yafliu@lsec.cc.ac.cn

Algorithmic Structures for Uncoordinated Communications and Statistical Inference in Exceedingly Large Spaces Workshop BIRS, Banff, March 10–15, 2024

Massive Connectivity for IoTs

- From massive machine-type communication (mMTC) in 5G to massive communication in 6G
- Please see Prof. Wei Yu's talk for more about the background such as massive random access, massive MIMO, covariance-based approach, scaling law, coordinate descent (CD) algorithms,...
- Mainly focus on covariance-based activity detection in multi-cell massive MIMO systems

- Problem Formulation
- Scaling Law
- Efficient CD Algorithms
- Simulation Results
- Concluding Remarks

Cooperative Multi-Cell MIMO System

- A multi-cell system consists of B cells, and each of cell contains
 - one base station (BS) equipped with M antennas;
 - *N* single-antenna devices, *K* of which are active during any coherence interval.
- The signals received at all BSs are collected and jointly processed at the central unit.

- The device n in cell b is preassigned a unique signature sequence $\mathbf{s}_{bn} \in \mathbb{C}^{L}$.
- The channel between device n in cell b and BS j is $\sqrt{g_{jbn}}\mathbf{h}_{jbn}$, where
 - $g_{jbn} \ge 0$ is the large-scale fading coefficient;
 - $\mathbf{h}_{jbn} \in \mathbb{C}^M$ is the Rayleigh fading coefficient following $\mathcal{CN}(\mathbf{0}, \mathbf{I})$.
- The activity of device n in cell b is indicated as $a_{bn} \in \{0, 1\}$:
 - $a_{bn} = 1$ indicates that the device is active;
 - $a_{bn} = 0$ indicates that the device is inactive.
- $\mathbf{W}_b \in \mathbb{C}^{L \times M}$ is the additive white Gaussian noise that follows $\mathcal{CN}(\mathbf{0}, \sigma^2 \mathbf{I})$.

Channel Model

Then the received signal $\mathbf{Y}_b \in \mathbb{C}^{L \times M}$ at BS b can be expressed as

$$\begin{split} \mathbf{Y}_{b} &= \sum_{n=1}^{N} a_{bn} \mathbf{s}_{bn} g_{bbn}^{\frac{1}{2}} \mathbf{h}_{bbn}^{T} + \sum_{j \neq b} \sum_{n=1}^{N} a_{jn} \mathbf{s}_{jn} g_{bjn}^{\frac{1}{2}} \mathbf{h}_{bjn}^{T} + \mathbf{W}_{b}, \\ &= \mathbf{S}_{b} \mathbf{A}_{b} \mathbf{G}_{bb}^{\frac{1}{2}} \mathbf{H}_{bb} + \sum_{j \neq b} \mathbf{S}_{j} \mathbf{A}_{j} \mathbf{G}_{bj}^{\frac{1}{2}} \mathbf{H}_{bj} + \mathbf{W}_{b}, \end{split}$$

where

- the signature sequence matrix $\mathbf{S}_b = [\mathbf{s}_{b1}, \dots, \mathbf{s}_{bN}] \in \mathbb{C}^{L \times N}$ and the large-scale fading coefficient matrices $\mathbf{G}_{bj} = \operatorname{diag}(g_{bj1}, \dots, g_{bjN}) \in \mathbb{R}^{N \times N}$ for all j are assumed to be known (e.g., when all devices' locations are fixed);
- the matrices $\mathbf{H}_{bj} = [\mathbf{h}_{bj1}, \dots, \mathbf{h}_{bjN}]^T \in \mathbb{C}^{N \times M}$ and the noise $\mathbf{W}_b \in \mathbb{C}^{L \times M}$ are unknown, but they are Gaussian distributed;
- the problem is to estimate $\mathbf{A}_b = \operatorname{diag}(a_{b1}, \ldots, a_{bN}) \in \mathbb{R}^{N \times N}$ for all b from the received signals $\{\mathbf{Y}_b\}_{b=1}^B$.

- Let $\mathbf{a} = [\mathbf{a}_1^T, \dots, \mathbf{a}_B^T]^T \in \mathbb{R}^{BN}$, where $\mathbf{a}_b = [a_{b1}, \dots, a_{BN}]^T \in \mathbb{R}^N$ denotes the diagonal entries of \mathbf{A}_b .
- For a given (deterministic) **a**, the columns of the received signal **Y**_b denoted by **y**_{bm}, m = 1, ..., M are i.i.d. Gaussian vectors:

 $\mathbf{y}_{bm} \sim \mathcal{CN}\left(\mathbf{0}, \mathbf{\Sigma}_{b}\right),$

where the (true) covariance matrix $\mathbf{\Sigma}_b \in \mathbb{C}^{L imes L}$ is given by

$$\boldsymbol{\Sigma}_{b} = \sum_{j=1}^{B} \mathbf{S}_{j} \mathbf{G}_{bj} \mathbf{A}_{j} \mathbf{S}_{j}^{H} + \sigma^{2} \mathbf{I}.$$

Recovery via MLE

0

• To recover a by using maximum likelihood estimation (MLE):

$$\begin{array}{ll} \underset{\mathbf{0}\leq\mathbf{a}\leq\mathbf{1}}{\operatorname{minimize}} & F(\mathbf{a}) \triangleq -\frac{1}{M}\log\operatorname{P}(\mathbf{Y}_{1},\ldots,\mathbf{Y}_{B} \mid \mathbf{a}) \\ &= -\frac{1}{M}\sum_{b=1}^{B}\log\operatorname{P}(\mathbf{Y}_{b} \mid \mathbf{a}) \\ &= \sum_{b=1}^{B}\left(-\frac{1}{M}\sum_{m=1}^{M}\log\operatorname{P}(\mathbf{y}_{bm} \mid \mathbf{a})\right) \\ &= \sum_{b=1}^{B}\left(\log|\mathbf{\Sigma}_{b}| + \operatorname{tr}\left(\mathbf{\Sigma}_{b}^{-1}\widehat{\mathbf{\Sigma}}_{b}\right)\right), \end{array}$$

where $\widehat{\Sigma}_{b}$ is the sample covariance matrix defined as

$$\widehat{\boldsymbol{\Sigma}}_{b} \triangleq \frac{1}{M} \mathbf{Y}_{b} \mathbf{Y}_{b}^{H} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{y}_{bm} \mathbf{y}_{bm}^{H}.$$

Covariance-Based Detection in Multi-Cell MIMO Systems

• The activity vector **a** can be estimated by solving the following MLE problem [Chen-Sohrabi-Yu; 2021]:

$$\begin{array}{ll} \underset{\mathbf{a}}{\text{minimize}} & \sum_{b=1}^{B} \left(\log |\boldsymbol{\Sigma}_{b}| + \operatorname{tr} \left(\boldsymbol{\Sigma}_{b}^{-1} \widehat{\boldsymbol{\Sigma}}_{b} \right) \right) & (1a) \\ \text{subject to} & \mathbf{a} \in [0, 1]^{BN}, \end{array}$$

where

 $\begin{aligned} &-\mathbf{a} = [\mathbf{a}_{1}^{T}, \dots, \mathbf{a}_{B}^{T}]^{T} \in \mathbb{R}^{BN} \text{ indicates the activity of all the devices;} \\ &- \boldsymbol{\Sigma}_{b} = \sum_{j=1}^{B} \mathbf{S}_{j} \mathbf{A}_{j} \mathbf{G}_{bj} \mathbf{S}_{j}^{H} + \sigma^{2} \mathbf{I} \text{ is the true covariance matrix of } \mathbf{Y}_{b}; \\ &- \widehat{\boldsymbol{\Sigma}}_{b} = \frac{1}{M} \mathbf{Y}_{b} \mathbf{Y}_{b}^{H} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{y}_{bm} \mathbf{y}_{bm}^{H} \text{ is the sample covariance matrix.} \end{aligned}$

• In the rest of this talk, we focus on the MLE problem formulated in (1).

Two Important Problems about MLE

Consider the following two important problems about the following MLE problem:

$$\begin{array}{ll} \underset{\mathbf{a}}{\text{minimize}} & \sum_{b=1}^{B} \left(\log |\boldsymbol{\Sigma}_{b}| + \operatorname{tr} \left(\boldsymbol{\Sigma}_{b}^{-1} \widehat{\boldsymbol{\Sigma}}_{b} \right) \right) \\ \text{subject to} & \mathbf{a} \in [0, 1]^{BN}. \end{array}$$

- Q1: Scaling law: What is the detection performance limit of the MLE formulation as the number of antennas M goes to infinity? How the number of cells B (and the inter-cell interference) affects the detection performance?
- Q2: Algorithms: How to design efficient algorithms for solving the MLE problem to achieve accurate and fast activity detection? (Caution! Do not overlook the summation due to multiple cells, which results into a highly nonlinear objective function.)

Two Important Problems about MLE

Consider the following two important problems about the following MLE problem:

$$\begin{array}{ll} \underset{\mathbf{a}}{\text{minimize}} & \sum_{b=1}^{B} \left(\log |\boldsymbol{\Sigma}_{b}| + \operatorname{tr} \left(\boldsymbol{\Sigma}_{b}^{-1} \widehat{\boldsymbol{\Sigma}}_{b} \right) \right) \\ \text{subject to} & \mathbf{a} \in [0, 1]^{BN}. \end{array}$$

- Q1: Scaling law: What is the detection performance limit of the MLE formulation as the number of antennas M goes to infinity? How the number of cells B (and the inter-cell interference) affects the detection performance?
- Q2: Algorithms: How to design efficient algorithms for solving the MLE problem to achieve accurate and fast activity detection? (Caution! Do not overlook the summation due to multiple cells, which results into a highly nonlinear objective function.)
 - Let us first answer Q1.

Lemma 1 (Chen-Sohrabi-Yu, 2021)

Consider the MLE problem (1) with given \mathbf{S} , $\{\mathbf{G}_b\}_{b=1}^B$, and σ_w^2 . Let matrix $\mathbf{\tilde{S}}$ be defined as

$$\widetilde{\mathbf{S}} \triangleq [\mathbf{s}_{11}^* \otimes \mathbf{s}_{11}, \mathbf{s}_{12}^* \otimes \mathbf{s}_{12}, \dots, \mathbf{s}_{BN}^* \otimes \mathbf{s}_{BN}] \in \mathbb{C}^{L^2 \times BN}.$$
(3)

Let $\hat{\mathbf{a}}^{(M)}$ be the solution to (1) when the number of antennas M is given and let \mathbf{a}° be the true activity indicator vector whose B(N-K) zero entries are indexed by \mathcal{I} , i.e.,

$$\mathcal{I} \triangleq \{i \mid a_i^\circ = 0\}.$$

Define two sets

$$\mathcal{N} \triangleq \{ \mathbf{x} \in \mathbb{R}^{BN} \mid \widetilde{\mathbf{S}} \mathbf{G}_b \mathbf{x} = \mathbf{0}, \forall b \},$$
(4)

$$\mathcal{C} \triangleq \{ \mathbf{x} \in \mathbb{R}^{BN} \mid x_i \ge 0 \text{ if } i \in \mathcal{I}, \, x_i \le 0 \text{ if } i \notin \mathcal{I} \}.$$
(5)

Then a necessary and sufficient condition for $\hat{\mathbf{a}}^{(M)} \to \mathbf{a}^{\circ}$ as $M \to \infty$ is that the intersection of \mathcal{N} and \mathcal{C} is the zero vector, i.e., $\mathcal{N} \cap \mathcal{C} = \{\mathbf{0}\}$.

Remarks on Lemma 1

- The condition $\mathcal{N} \cap \mathcal{C} = \{0\}$ implies that the likelihood function is uniquely identifiable in the feasible neighborhood of \mathbf{a}° :
 - the subspace $\mathcal N$ contains all directions from $\mathbf a^\circ$ along which the likelihood function $p(\mathbf Y_1,\mathbf Y_2,\ldots,\mathbf Y_B \mid \mathbf a^\circ)$ remains unchanged;
 - the cone ${\mathcal C}$ contains all directions starting from ${\bf a}^\circ$ towards the feasible region.
- There is generally no closed-form characterization of $\mathcal{N} \cap \mathcal{C}$.
- The scaling law analysis is to characterize the feasible set of system parameters such as N, K, L, and B under which $\mathcal{N} \cap \mathcal{C} = \{\mathbf{0}\}$ holds true.
- Recall $\mathcal{N} = \{\mathbf{x} \in \mathbb{R}^{BN} \mid \widetilde{\mathbf{S}}\mathbf{G}_b\mathbf{x} = \mathbf{0}, \forall b\}$. The signature sequences and the large-scale fading coefficients are critical in the scaling law analysis because they are involved in the definition of \mathcal{N} .

Assumption on Signature Sequences

Recall
$$\mathbf{S} = [\mathbf{S}_1, \dots, \mathbf{S}_B] \in \mathbb{C}^{L \times BN}$$
, where $\mathbf{S}_b = [\mathbf{s}_{b1}, \dots, \mathbf{s}_{bN}] \in \mathbb{C}^{L \times N}$.

Assumption 1 (Generation of the signature sequence matrix)

The signature sequence matrix **S** is generated from one of the following two ways, and the corresponding signature sequences are called Type I and Type II, respectively:

Type I: draw the components of **S** uniformly and independently from the discrete set $\left\{\pm\frac{\sqrt{2}}{2}\pm i\frac{\sqrt{2}}{2}\right\}$, i.e., draw the columns of **S** randomly and uniformly from the discrete set $\left\{\pm\frac{\sqrt{2}}{2}\pm i\frac{\sqrt{2}}{2}\right\}^{L}$ (where *i* is the imaginary unit);

Type II: draw the columns of **S** *uniformly and independently from the complex sphere of radius* \sqrt{L} .

- Both types of sequences are normalized with the length of \sqrt{L} ;
- Type I is better than Type II in terms of the complexity of generating and storing the signature sequences.

Theorem 1 (Wang-L.-Wang-Yu, 2023)

For both the Type I and Type II sequences stated in Assumption 1, the following holds. For any given parameter $\bar{\rho} \in (0,1)$, there exist constants c_1 and c_2 depending only on $\bar{\rho}$ such that if

$$s \le c_1 L^2 / \log^2(eBN/L^2),$$

then with probability at least $1 - \exp(-c_2L)$, the matrix $\tilde{\mathbf{S}}$ defined in (3) has the stable null space property of order *s* with parameters $\rho \in (0, \bar{\rho})$. More precisely, for any $\mathbf{v} \in \mathbb{R}^{BN}$ that satisfies $\tilde{\mathbf{S}}\mathbf{v} = \mathbf{0}$, the following inequality holds for

More precisely, for any $\mathbf{v} \in \mathbb{R}^{2N}$ that satisfies $\mathbf{S}\mathbf{v} = \mathbf{0}$, the following inequality holds for any index set $S \subseteq \{1, 2, ..., BN\}$ with $|S| \leq s$:

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \rho \|\mathbf{v}_{\mathcal{S}^{c}}\|_{1},$$

where v_S is a sub-vector of v with entries from S, and S^c is the complementary set of S with respect to $\{1, 2, ..., BN\}$.

• This conclusion of Type II signature sequences was previously proved in [Fengler-Haghighatshoar-Jung-Caire, 2021].

Recall
$$\mathcal{N} = \{ \mathbf{x} \in \mathbb{R}^{BN} \mid \widetilde{\mathbf{S}} \mathbf{G}_b \mathbf{x} = \mathbf{0}, \forall b \}.$$

Assumption 2

The multi-cell system consists of *B* hexagonal cells with radius *R*. In this system, the large-scale fading components are inversely proportional to the distance raised to the power γ , i.e.,

$$g_{bjn} = P_0 \left(\frac{D_0}{D_{bjn}}\right)^{\gamma},$$

where P_0 is the received power at the point with distance D_0 from the transmitting antenna, D_{bjn} is the BS-device distance between device n in cell j and BS b, and γ is the path-loss exponent.

j=

Lemma 2 (Wang-Liu-Wang-Yu, 2023)

Suppose that Assumption 2 holds true with $\gamma > 2$. Then, there exists a constant C > 0 depending only on γ , P_0 , D_0 , and R defined in Assumption 2, such that for each BS b, the large-scale fading coefficients satisfy

$$\sum_{i=1, j\neq b}^{B} \left(\max_{1 \le n \le N} g_{bjn} \right) \le C.$$
(6)

- The summation in the left-hand side of (6) is upper bounded by a constant C that is independent of B.
- $\gamma > 2$ is a sufficient condition for (6), and it typically holds for most channel models and application scenarios.

Theorem 2 (Wang-L.-Wang-Yu, 2023)

For both Type I and Type II sequences in Assumption 1 and under Assumption 2 with $\gamma > 2$, there exist constants c_1 and $c_2 > 0$, independent of system parameters K, L, N, and B, such that if

$K \le c_1 L^2 / \log^2(eBN/L^2),$

then the condition $\mathcal{N} \cap \mathcal{C} = \{0\}$ in Lemma 1 holds with probability at least $1 - \exp(-c_2L)$.

• The maximum number of active devices K that can be detected correctly in each cell increases quadratically with L and decreases logarithmically with B.

Theorem 2 (Wang-L.-Wang-Yu, 2023)

For both Type I and Type II sequences in Assumption 1 and under Assumption 2 with $\gamma > 2$, there exist constants c_1 and $c_2 > 0$, independent of system parameters K, L, N, and B, such that if

$K \le c_1 L^2 / \log^2(eBN/L^2),$

then the condition $\mathcal{N} \cap \mathcal{C} = \{\mathbf{0}\}$ in Lemma 1 holds with probability at least $1 - \exp(-c_2L)$.

- The maximum number of active devices K that can be detected correctly in each cell increases quadratically with L and decreases logarithmically with B.
- Implication: the maximum number of active devices that can be correctly detected in each cell in the multi-cell scenario is almost identical to that in the single-cell scenario [Fengler-Haghighatshoar-Jung-Caire, 2021] [Chen-Sohrabi-L.-Yu, 2022].

- Statistical properties of the two types of signature sequences.
- Good detection performance of MLE (under mild assumptions):
 - scaling law: $K = \mathcal{O}(L^2/\log^2(BN/L^2));$
 - estimation error: $\hat{\mathbf{a}}^{(M)} \mathbf{a}^{\circ} = \mathcal{O}\left(\frac{1}{\sqrt{M}}\right)$ (skipped).

- Statistical properties of the two types of signature sequences.
- Good detection performance of MLE (under mild assumptions):
 - scaling law: $K = \mathcal{O}(L^2/\log^2(BN/L^2));$
 - estimation error: $\hat{\mathbf{a}}^{(M)} \mathbf{a}^{\circ} = \mathcal{O}\left(\frac{1}{\sqrt{M}}\right)$ (skipped).
- Q2: how to achieve fast and accurate activity detection based on the MLE formulation?
- We shall design efficient CD algorithms for solving the MLE problem.

• Need to solve the following nonconvex MLE problem:

$$\underset{\mathbf{a}\in[0,1]^{BN}}{\text{minimize}} \quad F(\mathbf{a}) \triangleq \sum_{b=1}^{B} f_b(\mathbf{a}),$$

where $f_b(\mathbf{a}) \triangleq \log |\mathbf{\Sigma}_b| + \operatorname{tr} \left(\mathbf{\Sigma}_b^{-1} \widehat{\mathbf{\Sigma}}_b \right)$.

• Define the following nonnegative KKT violation vector

$$\mathbb{V}(\mathbf{a}) \triangleq |\operatorname{Proj}(\mathbf{a} - \nabla F(\mathbf{a})) - \mathbf{a}| \in \mathbb{R}^{BN}_+.$$

- Then solving the above problem is equivalent to finding a point that satisfies its KKT condition, i.e., $\mathbb{V}(\mathbf{a}) = \mathbf{0}$.
- Goal: for a given tolerance $\epsilon > 0$, find a feasible point **a** with $\|\mathbb{V}(\mathbf{a})\|_{\infty} \leq \epsilon$.

Review of A SOTA CD Algorithm

- Random permuted CD [Chen-Sohrabi-Yu, 2021]: at each iteration the algorithm randomly permutes the indices of all coordinates and then updates all coordinates one by one according to the order in the permutation.
- For any given coordinate (*b*, *n*) of device *n* in cell *b*, the algorithm solves the following one-dimensional optimization problem:

$$\underset{d \in [-a_{bn}, 1-a_{bn}]}{\text{minimize}} \sum_{j=1}^{B} \left(\log \left(1 + \frac{d}{g_{jbn}} \mathbf{s}_{bn}^{H} \boldsymbol{\Sigma}_{j}^{-1} \mathbf{s}_{bn} \right) - \frac{d g_{jbn}}{1 + d g_{jbn}} \mathbf{s}_{bn}^{H} \boldsymbol{\Sigma}_{j}^{-1} \mathbf{s}_{bn} \right)$$
(7)

to possibly update a_{bn} .

- Unlike the single-cell case, problem (7) has no closed-form solution.
- Problem (7) can be solved by finding the roots of a polynomial of degree 2B-1 with a complexity of $\mathcal{O}(B^3)$.

- (i) The total complexity of updating one coordinate is $\mathcal{O}(BL^2 + B^3)$, including solving the suproblem for d and updating Σ_b^{-1} for all $b = 1, \dots, B$.
- (ii) The current CD algorithm might become inefficient and involves many unnecessary coordinate updates when B and N are large, i.e., there are many subproblems with the solution being $d \approx 0$.

- (i) The total complexity of updating one coordinate is $\mathcal{O}(BL^2 + B^3)$, including solving the suproblem for d and updating Σ_b^{-1} for all $b = 1, \dots, B$.
- (ii) The current CD algorithm might become inefficient and involves many unnecessary coordinate updates when B and N are large, i.e., there are many subproblems with the solution being $d \approx 0$.
 - Propose two "simple" acceleration techniques to overcome the above two problems, which lead to two accelerated CD algorithms:
 - inexact CD, where the complexity of solving the subproblem is $\mathcal{O}(BL^2)$;
 - active set CD, where only the coordinates in a carefully selected set (called active set) are updated.

Proposed Inexact CD Algorithm

• Rewrite the one-dimensional subproblem (7) with given (b, n) as follows:

$$\underset{d\in[-a_{bn},1-a_{bn}]}{\text{minimize}} \quad \sum_{j=1}^{B} f_j(\mathbf{a} + d\,\mathbf{e}_{bn}), \tag{8}$$

where

- $\mathbf{e}_{bn} \in \mathbb{R}^{BN}$ is an all-zero vector except its (b, n)-th component being 1;

$$-f_j(\mathbf{a} + \boldsymbol{d}\mathbf{e}_{bn}) = f_j(\mathbf{a}) + \log\left(1 + \boldsymbol{d}g_{jbn}\,\mathbf{s}_{bn}^H\boldsymbol{\Sigma}_j^{-1}\mathbf{s}_{bn}\right) - \frac{\boldsymbol{d}\,g_{jbn}\,\mathbf{s}_{bn}^H\boldsymbol{\Sigma}_j^{-1}\boldsymbol{\Sigma}_j\boldsymbol{\Sigma}_j^{-1}\mathbf{s}_{bn}}{1 + \boldsymbol{d}\,g_{jbn}\,\mathbf{s}_{bn}^H\boldsymbol{\Sigma}_j^{-1}\mathbf{s}_{bn}}.$$

- Motivation: update coordinate a_{bn} with a lower complexity by solving problem (8) inexactly in a controllable fashion.
- Observations: (i) the large-scale fading coefficient g_{jbn} appears in the *j*-th term multiplied with d in (8); and (ii) $g_{bbn} \gg g_{jbn}$ for all $j \neq b$ (due to the path-loss model).

Proposed Inexact CD Algorithm

- Idea: construct a simple yet tight approximation of problem (8) by retaining the *b*-th dominant term and approximating the other terms.
- The approximate problem is given by

$$\boldsymbol{I}^{(\boldsymbol{\mu})} = \operatorname*{argmin}_{d \in [-a_{bn}, 1-a_{bn}]} \quad f_b(\mathbf{a} + \boldsymbol{d} \mathbf{e}_{bn}) + \sum_{j=1, \, j \neq b}^B \left(f_j(\mathbf{a}) + [\nabla f_j(\mathbf{a})]_{bn} \, \boldsymbol{d} \right) + \frac{\mu}{2} \, \boldsymbol{d}^2. \quad (9)$$

• The parameter μ is chosen (e.g., by the line search) such that $d^{(\mu)}$ satisfies the following sufficient decrease condition:

$$\sum_{j=1,\,j\neq b}^{B} f_{j}\left(\mathbf{a}+d^{(\mu)}\mathbf{e}_{bn}\right) \leq \sum_{j=1,\,j\neq b}^{B} \left(f_{j}(\mathbf{a})+\left[\nabla f_{j}(\mathbf{a})\right]_{bn}d^{(\mu)}\right)+\frac{\mu}{2}\left(d^{(\mu)}\right)^{2}.$$

• The approximate problem in (9) can be solved by the cubic formula with complexity $\mathcal{O}(1)$.

Algorithm 1 CD algorithm for solving the MLE problem

- 1: Initialize $\mathbf{a} = \mathbf{0}, \ \Sigma_b^{-1} = \sigma_w^{-2} \mathbf{I}, \ 1 \le b \le B, \ \text{and} \ \epsilon > 0;$
- 2: repeat
- 3: Randomly select a permutation $\{(b, n)_1, (b, n)_2, \dots, (b, n)_{BN}\}$ of the coordinate indices $\{(1, 1), (1, 2), \dots, (1, N), \dots, (B, 1), (B, 2), \dots, (B, N)\}$ of **a**;

4: for
$$(b,n)=(b,n)_1$$
 to $(b,n)_{BN}$ do

- 5: If CD: Apply the root-finding algorithm [McNamee, 2007] to solve subproblem (7) *exactly* to obtain \hat{d} , and set $d = \hat{d}$;
- 6: If inexact CD: Use the cubic formula to solve the approximate subproblem (9) to obtain \overline{d} , and set $d = \overline{d}$;
- 7: $a_{bn} \leftarrow a_{bn} + d;$

8:
$$\Sigma_j^{-1} \leftarrow \Sigma_j^{-1} - \frac{d g_{jbn} \Sigma_j^{-1} \mathbf{s}_{bn} \mathbf{s}_{bn}^{J} \Sigma_j^{-1}}{1 + d g_{jbn} \mathbf{s}_{bn}^{J} \Sigma_j^{-1} \mathbf{s}_{bn}}, \ j = 1, \dots, B;$$

- 9: end for
- 10: **until** $\|\mathbb{V}(\mathbf{a})\|_{\infty} \leq \epsilon;$
- 11: Output a.

- Motivation of the active set CD algorithm:
 - both CD and inexact CD algorithms might do many unnecessary coordinate updates where subproblems (7) and (9) are solved but the corresponding *a_{bn}* almost does not change and the objective does not decrease "sufficiently";
 - in this case, the solution d of subproblems (7) and (9) has a very small magnitude, i.e.,

 $d \approx 0.$

• The active set idea: select a subset of coordinates that have the most potential of decreasing the objective to reduce the number of unnecessary coordinate updates.

Proposed Active Set CD Algorithm

- At each iteration, the active set CD algorithm
 - first judiciously selects an "active" set of coordinates;
 - then updates the coordinates in the active set once.
- The proposed selection strategy for the active set $\mathcal{A}^{(k)}$ is expressed as

$$\mathcal{A}^{(k)} = \left\{ (b, n) \mid \left[\mathbb{V}(\mathbf{a}^{(k)}) \right]_{bn} \ge \omega^{(k)} \right\},\$$

where $\omega^{(k)} \ge 0$ is a properly selected threshold parameter at each iteration.

- Intuition: updating the coordinate a_{bn} with a larger $[\mathbb{V}(\mathbf{a})]_{bn}$ is expected to yield a larger decrease in the objective function. [Do not treat all coordinates equally as in CD!]
- The choice of $\omega^{(k)}$ is crucial in achieving the balance between decreasing the objective function and reducing the cardinality of the active set (and hence the computational cost) at the k-th iteration.

Algorithm 2 Active set CD algorithm for solving the MLE problem

- 1: Initialize $\mathbf{a}^{(0)} = \mathbf{0}, k = 0$, and $\epsilon > 0$;
- 2: repeat
- 3: Update $\omega^{(k)}$;
- 4: Select the active set $\mathcal{A}^{(k)} = \{(b, n) \mid [\mathbb{V}(\mathbf{a}^{(k)})]_{bn} \ge \omega^{(k)}\};\$
- 5: Apply lines 5–8 in Algorithm 1 to update all coordinates in $\mathcal{A}^{(k)}$ only once in the order of a random permutation;
- 6: until $\|\mathbb{V}(\mathbf{a}^{(k)})\|_{\infty} \leq \epsilon;$
- 7: Output $\mathbf{a}^{(k)}$.
 - Note that $\mathbb{V}(\mathbf{a}^{(k)})$ will become smaller and smaller as k increases.
 - The cardinality of the selected active set, $|\mathcal{A}^{(k)}|$, is expected to be significantly less than *BN* and gradually decreases as the iteration goes on.
 - The active set strategy can accelerate both CD and inexact CD algorithms.

Convergence and iteration complexity properties of the proposed active set CD algorithm:

Theorem 3 (Wang-L.-Wang-Yu, 2023)

For any given error tolerance $\epsilon > 0$, let $\omega^{(k)}$ satisfy the condition

$$\epsilon \le \omega^{(k)} \le \max\left\{ \left\| \mathbb{V}(\mathbf{a}^{(k)}) \right\|_{\infty}, \epsilon \right\}.$$

Then, the proposed active set CD Algorithm 2 will terminate (i.e., finding a feasible point **a** which satisfies $\|\mathbb{V}(\mathbf{a})\|_{\infty} \leq \epsilon$) within $\mathcal{O}(1/\epsilon^2)$ iterations.

Table 1: A summary of per-iteration complexity comparison.

	Vanilla CD	Inexact CD	Active set CD	Active set inexact CD
Total number of updated coordinates	BN		$\left \mathcal{A}^{(k)} ight $	
Complexity of updating one coordinate	$O(BL^2 + B^3)$	$O(BL^2)$	$\mathcal{O}(BL^2 + B^3)$	$O(BL^2)$

• Inexact CD:

- the total complexity of updating one coordinate is $\mathcal{O}(BL^2)$;
- the per-iteration total complexity (of updating all coordinates) is $\mathcal{O}(BN \times BL^2)$.
- Active set CD:
 - the total number of updated coordinates is $|\mathcal{A}^{(k)}|$, which is generally significantly less than BN;
 - terminate within $\mathcal{O}(\varepsilon^{-2})$ iterations to return a point satisfying $\|\mathbb{V}(\mathbf{a})\|_{\infty} \leq \epsilon$.

• Simulation settings:

- consider a multi-cell system consisting of hexagonal cells, and all potential devices within each cell are uniformly distributed.
- the radius of each cell is $500\,\mathrm{m}.$
- the channel path-loss is $128.1 + 37.6 \log 10(d)$ (satisfying Assumption 2 with $\gamma = 3.76$), where d is the corresponding BS-device distance in km.
- the transmit power of each device is $23\,\rm dBm$ and the background noise power is $-169\,\rm dBm/Hz$ over $10\,\rm MHz.$
- Two goals in this part:
 - detection performance comparison of different types of signature sequences
 - computational efficiency of proposed inexact and active set CD algorithms

Detection Performance Comparison

Figure 1: Detection performance comparison of three different types of signature sequences for different M and L (B = 7, N = 200, and K = 20).

- Almost the same detection performance can be obtained by using Type I and Type II signature sequences.
- The detection performance of Type III signature sequences (generated from an i.i.d. complex Gaussian distribution) is worse than the other two.
- Key message: normalization of the signature sequences is crucial to the detection performance, especially to the FA error performance. Please check our paper on more simulation results and explanations on this.

Ya-Feng Liu (AMSS, CAS)

Benchmarks

- Consider the following two algorithms as benchmarks:
 - vanilla CD [Chen-Sohrabi-Yu, 2021];
 - clustering-based CD [Ganesan-Björnson-Larsson, 2021], which utilizes the signals from T dominant BSs for a given user (the number of clusters T is chosen to be 1, 2, 3 in our implementation).

• Our proposed three algorithms:

- inexact CD;
- active set CD;
- active set inexact CD.
- Parameter settings:
 - the signature sequences used are Type I.

-
$$B = 7, K = 20, L = 20$$
, and $M = 128, \epsilon = 10^{-3}, \beta = 2$, and

$$\omega^{(k)} = \max\left\{5^{-k-1} \left\| \mathbb{V}(\mathbf{a}^{(k)}) \right\|_{\infty}, \epsilon\right\}.$$

Comparison of Probability of Error versus Running Time

Figure 2: Comparison of the probability of error of the proposed algorithms and the two benchmarks versus the running time.

- Active set inexact CD is the most efficient algorithm.
- Clustering-based CD is efficient but its probability of error is worse than the other algorithms (due to the coarse approximation).

Ya-Feng Liu (AMSS, CAS)

Average Running Time Comparison

Figure 3: Average running time comparison of the proposed algorithms and the vanilla CD algorithm for different B and N.

- As *B* increases, the algorithms that solve subproblem (7) inexactly, inexact CD and active set inexact CD, are much more efficient.
- As *N* increases, the algorithms that use the active set selection strategy, active set CD and active set inexact CD, are significantly more efficient.

Ya-Feng Liu (AMSS, CAS)

Device Activity Detection in Multi-Cell MIMO

Comparison of Number of Updated Coordinates

Figure 4: Comparison of the number of updated coordinates of vanilla CD and active set CD over the iteration.

- The number of updated coordinates of active set CD at each iteration is significantly less than that of vanilla CD at each iteration.
- The overall number of iterations of active set CD is slightly more than that of vanilla CD.

Ya-Feng Liu (AMSS, CAS)

- I: Joint device data and activity detection when each device has only a few bits of data to transmit [Chen-Sohrabi-L.-Yu, 2019]
- II: Joint device activity and delay detection when active devices asynchronously transmit their preassigned signature sequences [Li-Lin-L.-Ai-Wu, 2023]
- III: Device activity detection when the BS is equipped with low-resolution ADCs [Wang-L.-Wang-Liu-Pan-Cui, 2023]

Concluding Remarks

- Covariance-based activity detection in cooperative multi-cell massive MIMO systems
- Statistical properties of two types of signature sequences and scaling law result
- Two efficient accelerated CD algorithms:
 - inexact CD: reducing the complexity of updating one coordinate by exploiting the special structure of the objective function;
 - active set CD: reducing the total number of unnecessary coordinate updates by using the optimality condition;
 - convergence and iteration complexity guarantees of the proposed CD algorithms.
- Practical issues and extensions

My Collaborators on Massive Random Access

Reference

- Z. Wang, Y.-F. Liu, Z. Wang, and W. Yu, "Covariance-based activity detection in cooperative multi-cell massive MIMO: Scaling law and efficient algorithms," 2023. [Online]. Available: https://arxiv.org/abs/2311.15299
- Y.-F. Liu, W. Yu, Z. Wang, Z. Chen, and F. Sohrabi, "Grant-free random access via covariance-based approach," in *Next Generation Multiple Access.*, (Editors: Yuanwei Liu, Liang Liu, Zhiguo Ding, and Xuemin (Sherman) Shen), Wiley, 2023.
- Z. Chen, F. Sohrabi, and W. Yu, "Sparse activity detection in multi-cell massive MIMO exploiting channel large-scale fading," *IEEE Trans. Signal Process.*, vol. 69, pp. 3768–3781, Jun. 2021.
- Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, "Phase transition analysis for covariance-based massive random access with massive MIMO," *IEEE Trans. Inf. Theory*, vol. 68, no. 3, pp. 1696–1715, Mar. 2022.
- A. Fengler, S. Haghighatshoar, P. Jung, and G. Caire, "Non-Bayesian activity detection, large-scale fading coefficient estimation, and unsourced random access with a massive MIMO receiver," *IEEE Trans. Inf. Theory*, vol. 67, no. 5, pp. 2925–2951, May 2021.
- U. K. Ganesan, E. Björnson, and E. G. Larsson, "Clustering-based activity detection algorithms for grant-free random access in cell-free massive MIMO," *IEEE Trans. Commun.*, vol. 69, no. 11, pp. 7520–7530, Nov. 2021.

Contact Information

Many Thanks for Your Attention!

- Homepage: http://lsec.cc.ac.cn/~yafliu/
- E-mail: yafliu@lsec.cc.ac.cn