DATA=DRIVEN SIGNAL RECOVERY

Yury Polyanskiy (MIT)
joint with a (large) bunch of people

Talk plan

1.Thesis
2.Theory
3.Practice

1. Let's move beyond iid Gaussian noise 2.Likelihood-free hypothesis testing 3.Physics, Computer Vision, Comm

Classical detection and estimation

Adding a splash of 21st century

- How do we teach signal detection?

$$
H_{0}: Y_{i} \sim \mathcal{N}\left(1, \sigma^{2}\right) \quad H_{1}: Y_{i} \sim \mathcal{N}\left(-1, \sigma^{2}\right)
$$

and threshold the average $\frac{1}{m} \sum_{i} Y_{i} \gtrless 0$

- ... more generally:

$$
H_{0}: Y^{m}=s_{0}+Z^{m} \quad H_{1}: Y^{m}=s_{1}+Z^{m}
$$

and do matched filter: $\left(Y^{m}, s_{1}-s_{0}\right) \gtrless 0$

- ... more generally:

$$
H_{0}: Y^{m} \sim P_{Y^{m}}
$$

$$
H_{1}: Y^{m} \sim Q_{Y^{m}}
$$

- ... more generally:

$$
H_{0}: Y^{m} \sim P, P \in \mathscr{P} \quad H_{1}: Y^{m} \sim Q, Q \in \mathbb{Q}
$$ and do what?..

- Try GLRT, otherwise search Annals of Stats
- Problem: if \mathscr{P}, \mathbb{Q} are realistic (i.e. large), then sample complexity is bad (curse of dimensionality etc)

Thesis: often we have side information (prior knowledge) about $P_{Y^{m}} Q_{Y^{m}}$ in the form of iid samples.

What is likelihood-free inference?
 aka simulation-based inference

What is likelihood-free inference (LFI)?

 aka simulation-based inference (SBI)- Simulation access to black-box model $\theta \mapsto X \sim \mathbb{P}_{\theta}$
- Given true data $Z \sim \mathbb{P}_{\theta^{\star}}^{\otimes m}$, do inference on θ^{\star}
- Intractable likelihood: do so without learning the map $\theta \mapsto \mathbb{P}_{\theta}$
- Examples: climate modeling and particle physics

Discovery of the Higgs boson

- Observe data $Z \sim \mathbb{P}^{\otimes m}$

$$
H_{0}: \mathbb{P}=\mathbb{P}_{\text {noHiggs }} \text { versus } \quad H_{1}: \mathbb{P}=\mathbb{P}_{\text {Higgs }}
$$

- Simulate $X \sim \mathbb{P}_{\text {noHiggs }}^{\otimes n}$ and $Y \sim \mathbb{P}_{\text {Higgs }}^{\otimes n}$

$$
\begin{aligned}
& \bullet=Z_{i} \\
& \mathrm{~S}=\text { classifies }^{\star} X \text { vs } Y \\
& \text { Output }=\#\{\bullet \in S\} \lessgtr \gamma
\end{aligned}
$$

*Boosted decision trees in the case of the Higgs boson discovery

Minimax setup

Likelihood-free hypothesis testing (LFHT)

Questions we will address:

1) Fix
2) Let - Can we avoid learning distributions P_{X}, P_{Y} ?

- Is there a tradeoff m vs n ?

3) Sim
4) Depending on H_{0} or H_{1} nature generates $Z \sim \mathbb{P}_{\mathrm{X}}^{\otimes m}$ or $\mathbb{P}_{\mathrm{Y}}^{\otimes m}$ respectively
5) Statistician observes $(X, Y, Z, \mathscr{P}, \epsilon)$ and decides H_{0} or H_{1}

Likelihood-free hypothesis testing (LFHT)

$\mathscr{R}(\epsilon, \mathscr{P}) \subseteq \mathbb{N}^{2}$ is set of (m, n) s.t. exists test that given X, Y, Z performs

$$
H_{0}: \mathbb{P}_{X}=\mathbb{P}_{Z} \quad \text { versus } \quad H_{1}: \mathbb{P}_{Y}=\mathbb{P}_{Z}
$$

with (Type-I + Type II error) $<1 \%$.

278
On Classification with Empirically Observed Statistics and Universal Data Compression

JACOB ZIV, Fellow, IEEE

- ... and other prior work. But only for discrete distributions and fixed

$$
\mathrm{TV}\left(\mathbb{P}_{X}, \mathbb{P}_{Y}\right) \asymp 1, \quad m, n \rightarrow \infty
$$

$X \sim \mathbb{P}_{X}^{\otimes n}$
 Statistical Problems
 $Y \sim \mathbb{P}_{\mathrm{Y}}^{\otimes n}$
 unknown, \mathbb{P}_{0} known, all in \mathscr{P}
 $Z \sim \mathbb{P}_{\mathrm{Z}}^{\otimes m}$

The classes \mathscr{P}

Choices of \mathscr{P} we considered:

- $\mathscr{P}_{\mathrm{H}}(\beta, d)=\left\{\beta\right.$-Hölder densities over $[0,1]^{d}$ with $\left.\|\cdot\|_{\mathscr{C}^{\beta}} \leq C_{\mathrm{H}}\right\}$ aka β times differentiable densities.

- $\mathscr{P}_{\mathrm{Db}}(k)=\left\{\right.$ dis This talk: focus on \mathscr{P}_{H} (smooth densities) $\left.\leq C_{\mathrm{Db}} / k\right\}$
- $\mathscr{P}(k)=\{$ all discrete distributions on $[k]\}$
- arbitrary densities on $[0,1]^{d}$ (with MMD separation instead of TV)

Rates vs sample complexity

Famous results for $\mathscr{P}_{\mathrm{H}}(\beta, d)$

	Rate	Sample complexity
Goodness-of-fit	$n^{-\frac{\beta}{2 \beta+d / 2}}$	$\epsilon^{-\frac{2 \beta+d / 2}{\beta}}=n_{\text {GoF }}$
Estimation	$n^{-\frac{\beta}{2 \beta+d}}$	$\epsilon^{-\frac{2 \beta+d}{\beta}}=n_{\text {Est }}$

Results for $\mathscr{P}_{\mathrm{H}}, \mathscr{P}_{\mathrm{G}}$ and $\mathscr{P}_{\mathrm{Db}}$

Theorem (Gerber-P.'2022)
Up to constant factors:
$\mathscr{R}(\epsilon, \mathscr{P}) \asymp\left\{\begin{array}{c}m \geq 1 / \epsilon^{2} \text { and } n \geq n_{\text {GoF }} \\ \text { and } n \cdot m \geq n_{\text {GoF }}^{2}\end{array}\right\}$

Interpreting the results

$\mathscr{R}(\epsilon, \mathscr{P}) \asymp\left\{\begin{array}{c}m \geq 1 / \epsilon^{2} \text { and } n \geq n_{\text {GoF }} \\ \text { and } n \cdot m \geq n_{\text {GoF }}^{2}\end{array}\right\}$

n_{GOF}	$n_{\text {Est }}$	
$\overbrace{\mathrm{H}}(\beta, d)$	$\epsilon^{-\frac{2 \beta+d / 2}{\beta}}$	$\epsilon^{-\frac{2 \beta+d}{\beta}}$

Target: minimal m (as in Higgs)

$$
n_{\text {Est }}=n_{\text {GoF }}^{2} \epsilon^{2}
$$

Interpreting the results

$$
\mathscr{R}(\epsilon, \mathscr{P}) \asymp\left\{\begin{array}{c}
m \geq 1 / \epsilon^{2} \text { and } n \geq n_{\mathrm{GoF}} \\
\text { and } n \cdot m \geq n_{\mathrm{GoF}}^{2}
\end{array}\right\}
$$

Point	Algorithm	Lower bd
$\mathrm{A} \leftrightarrow\left(1 / \epsilon^{2}, \infty\right)$	Binary HT	Trivial
$\mathrm{B} \leftrightarrow\left(1 / \epsilon^{2}, n_{\text {Est }}\right)$	Est + robust HT	New
$\mathrm{C} \leftrightarrow\left(n_{\mathrm{TS}}, n_{\mathrm{TS}}\right)$	Two-sample*	Reduction to TS
$\mathrm{D} \leftrightarrow\left(\infty, n_{\text {GoF }}\right)$	Goodness-of-fit	New but easy

Can estimate \mathbb{P}_{X} and \mathbb{P}_{Y}

${ }_{15} \quad{ }^{*} n_{\mathrm{GoF}}=n_{\mathrm{TS}}$ for each of these classes

The test statistic

- Based on Ingster's L^{2}-comparison idea
- Discretize $[0,1]^{d}$ cube into $k=\epsilon^{-\frac{d}{\beta}}$ bins
- Empirical pmfs $\hat{p}_{X}, \hat{p}_{Y}, \hat{p}_{Z}$ based on (n, n, m) observations
- Theorem: All points on the optimal tradeoff are achieved by

$$
\begin{gathered}
T=\left\|\hat{p}_{X}-\hat{p}_{Z}\right\|_{2}^{2}-\left\|\hat{p}_{Y}-\hat{p}_{Z}\right\|_{2}^{2} \\
\Psi=\square\{T \geq 0\}
\end{gathered}
$$

Enter Machine Learning: Practical tests

Kernel-based L_{2} test (MMD)

- Real-world distributions are high-dimensional \Longrightarrow discretization impractical.
- Given $\hat{\mathbb{P}}_{X}, \hat{\mathbb{P}}_{Z}$ measure distance after applying feature map ϕ :
$\operatorname{MMD}^{2}\left(\hat{\mathbb{P}}_{X}, \hat{\mathbb{P}}_{Z}\right)=\|\hat{\mathbb{E}} \phi(X)-\hat{\mathbb{E}} \phi(Z)\|_{2}^{2}$
(proposed for two-sample testing [Sutherland et al, ICLR'17])
- We adopt this to LFHT via the same mechanism: $T(X, Y, Z)=\|\hat{\mathbb{E}} \phi(X)-\hat{\mathbb{E}} \phi(Z)\|_{2}^{2}-\|\hat{\mathbb{E}} \phi(Y)-\hat{\mathbb{E}} \phi(Z)\|_{2}^{2} \quad \gtrless 0$
- Has the same LFHT region wrt $\operatorname{MMD}\left(P_{X}, P_{Y}\right) \geq \epsilon$ [Gerber, Jiang, Sun, P., NeurlPS'23]
- Train feature map to maximize $\frac{\mathbb{E}\left[T \mid H_{0}\right]}{\sqrt{\operatorname{Var}\left[T \mid H_{0}\right]}}$ ratio (gradient descent in kernel space)

LFHT for CIFAR

- So our test:

$$
T(X, Y, Z)=\|\hat{\mathbb{E}} \phi(X)-\hat{\mathbb{E}} \phi(Z)\|_{2}^{2}-\|\hat{\mathbb{E}} \phi(Y)-\hat{\mathbb{E}} \phi(Z)\|_{2}^{2} \quad \gtrless 0
$$

- Here is an example: $X=C$ IFAR10 vs $Y=1 / 3$ CIFAR + 2/3 Diffusion Model (DDPN)
- $\left(n \approx 10^{5}, m \approx 10^{1}\right)$

Back to Higgs [NeurIPS'23]

- Instead of fixed two-sided error physicists use significance of discovery
- Expressed in σ 's. For the new particle need 5σ. Our road to $5 \sigma \ldots$

Interference rejection

Demodulation task in communication

Received signal

Signal of Interest (SOI) e.g. BPSK/QPSK

Noise and interference

Example at -9 dB Signal-toInterference Ratio (SIR)

OFDM interference is marginally Gaussian => need to exploit timefrequency structure of the interference. How?

Idea: Use signal (source) separation

$$
\underset{\text { observed }}{\boldsymbol{y}}=\underset{\text { sol }}{s}+\underset{\text { interference }}{b}
$$

Two types of architectures

Supervised (end-to-end)

- Create many synthetic mixtures $s+b$
- Feed pairs (y, s) to DNN
- Force it to learn to recover s from y
- Pros: best performance
- Cons: need to retrain DNN for each signal-interference pair

Bayesian MAP

- Collect many samples of b
- Train a diffusion model to learn P_{b}
- Use MAP to recover s from y
- Pros: one model works for all SOI
- Cons: slow inference, performance

NeurlPS'2023: WaveNet (dilated CNN)

	Description
Number of layers	30 residual layers with dilation cycle of $\{1,2, \ldots$ $512\}$ times
Total numbeated three parameters	4 M
GPU compute (training)	8 GPU days

Additional training tricks:

Adaptive learning rate scheduler based on validation loss
Mixed precision training with fp16 to speed up inference

So does it work?
 QPSK vs OFDM (5GNR) example

-*- Matched Filter Demod Only (No Mitigation)
-* : LMMSE Separator + Matched Filter Demod

- - UNet Separator + Matched Filter Demod
- WaveNet Separator + Matched Filter Demod

-* - Matched Filter Demod Only (No Mitigation)
-* - LMMSE Separator + Matched Filter Demod
$-\uparrow$ UNet Separator + Matched Filter Demod
- WaveNet Separator + Matched Filter Demod

ICASSP'2024: Session on RF Challenge

Learnable dilations and new data augmentation schemes

Number of parameters: 16M Number of GPUs: $4 \times$ RTX 3090 GPU Compute: 13 GPU days

Attention-based UNet and finetuning of our WaveNet baseline

Number of parameters: 350M Number of GPUs: $4 \times$ A100 GPU Compute: 8 GPU days

New UNet architecture with bidirectional LSTM bottleneck layer

Number of parameters: 60M Number of GPUs: $1 \times$ RTX 6000 GPU Compute: 4 GPU days

Two types of architectures

Supervised (end-to-end)

- Create many synthetic mixtures $s+b$
- Feed pairs (y, s) to DNN
- Force it to learn to recover s from y
- Pros: best performance
- Cons: need to retrain DNN for each signal-interference pair

Bayesian MAP

- Collect many samples of b
- Train a diffusion model to learn P_{b}
- Use MAP to recover s from y
- Pros: one model works for all SOI
- Cons: slow inference, performance

Diffusion models

Images and RF

SOTA generative model that can learn complex structures from signal datasets

Can diffusion models capture the underlying discrete statistical structures of RF signals?

Sample from diffusion model trained on QPSK signals

Score-based Source separation (α-RGS)

$\mathbf{s} \in \mathcal{S} \subset \mathbb{C}^{D}, \mathbf{b} \in \mathbb{C}^{D}$ statistically independent sources
MAP Estimation Given $\mathbf{y}=\mathbf{s}+\mathbf{b}$

$$
\hat{\mathbf{s}}=\underset{\mathbf{s} \in \mathcal{S}: \mathbf{y}=\mathbf{s}+\mathbf{b}}{\arg \max } p_{\mathbf{s} \mid \mathrm{y}}(\mathbf{s} \mid \mathbf{y})=\underset{\mathbf{s} \in \mathcal{S}}{\arg \min }-\log \widehat{P_{\mathbf{s}}(\mathbf{s})-\log p_{\mathrm{b}}(\mathbf{y}-\mathbf{s})}
$$

Gradient Descent Estimate $\overline{\mathbf{s}}=\mathbf{s}+\epsilon, \epsilon \rightarrow 0$

Combinatorially hard
Non-differentiable

$$
\mathbf{s}_{i+1} \leftarrow \mathbf{s}_{i}+\underbrace{\nabla \log p_{\mathbf{s}}\left(\mathbf{s}_{i}\right)}_{\text {Score }}-\nabla \log p_{\mathrm{b}}\left(\mathbf{y}-\mathbf{s}_{i}\right)
$$

Randomized Gaussian Smoothing with an α-posterior (α-RGS)
Diffusion Models Model unknown priors (score functions) over s and Gaussian Smoothing Use noise variance levels α_{t} and α_{u} α-posterior Reweight likelihood with weight $\alpha=\omega$

Smoothed optimization landscape

$$
\mathcal{L}(\theta) \triangleq-\mathbb{E}_{t, \mathbf{z}_{s}}\left[\log p_{\tilde{\mathbf{s}}_{t}}\left(\tilde{\mathbf{s}}_{t}(\theta)\right)\right]-\omega \mathbb{E}_{u, \mathbf{z}_{b}}\left[\log p_{\tilde{\mathbf{b}}_{u}}\left(\tilde{\mathbf{b}}_{u}(\theta, \mathbf{y})\right)\right]
$$

Results: improving SOTA

Other algos based on approximating MAP via score-learning
RRC-QPSK SOI + OFDM (QPSK) Interference

Averaging over regularization $+\alpha$-posterior give us an edge

Conclusion

(i) We studied signal detection (hypothesis testing) when hypotheses are only specified through examples.
(ii) We saw minimax optimal bounds and practical algorithms
(iii) Next : Study notion of regret or instance-optimality.
(iv) More generally: Study parameter estimation, confidence intervals, channel coding, constellation design,...

Thank you!

