DATA-DRIVEN SIGNAL RECOVERY

Yury Polyanskíy (MIT)

joint with a (large) bunch of people

1.Thesis 2.Theory 3.Practice

1.Let's move beyond iid Gaussian noise 2.Likelihood-free hypothesis testing 3. Physics, Computer Vision, Comm

Classical detection and estimation Adding a splash of 21st century

How do we teach signal detection?

 $H_0: Y_i \sim \mathcal{N}(1, \sigma^2) \qquad \qquad H_1: Y_i \sim \mathcal{N}(-1, \sigma^2)$

and threshold the average $\frac{1}{m} \sum_{i} Y_i \ge 0$

more generally:

 $H_1: Y^m = s_1 + Z^m$ $H_0: Y^m = s_0 + Z^m$

and do matched filter: $(Y^m, s_1 - s_0) \ge 0$

more generally:

 $H_0: Y^m \sim P_{Y^m}$ $H_1: Y^m \sim Q_{Y^m}$

and do Neyman-Pearson

more generally:

 $H_0: Y^m \sim P, P \in \mathscr{P} \qquad H_1: Y^m \sim Q, Q \in \mathscr{Q}$ and do what?...

- Try GLRT, otherwise search Annals of Stats
- Problem: if \mathcal{P} , \mathcal{Q} are realistic (i.e. large), then sample complexity is **bad** (curse of dimensionality etc)

Thesis: often we have side information (prior knowledge) about $P_{Y^m} Q_{Y^m}$ in the form of iid samples.

Science: simulations **Communication: RF** captures

What is likelihood-free inference? aka simulation-based inference

What is likelihood-free inference (LFI)? aka simulation-based inference (SBI)

- Simulation access to **black-box** model $\theta \mapsto X \sim \mathbb{P}_{\theta}$
- Given true data $Z \sim \mathbb{P}_{\theta^{\star}}^{\otimes m}$, do inference on θ^{\star}
- Intractable likelihood: do so without learning the map $heta\mapsto \mathbb{P}_{ heta}$
- Examples: climate modeling and particle physics

Discovery of the Higgs boson

• Observe data $Z \sim \mathbb{P}^{\otimes m}$

 $H_0: \mathbb{P} = \mathbb{P}_{\text{noHiggs}}$ Versus H• Simulate $X \sim \mathbb{P}_{noHiggs}^{\otimes n}$ and $Y \sim \mathbb{P}_{Higgs}^{\otimes n}$

 $\bullet = Z_i$ $S = classifies^* X vs Y$ Output = $\#\{\bullet \in S\} \leq \gamma$

*Boosted decision trees in the case of the Higgs boson discovery

$$H_1: \mathbb{P} = \mathbb{P}_{\mathsf{Higgs}}$$

Simulation of the birth of a Higgs boson (CERN, Lucas Taylor)

Minimax setup

7

Likelihood-free hypothesis testing (LFHT)

Can we avoid learning distributions P_X, P_Y?
Is there a tradeoff *m* vs *n*? 2) Let 3) Sim

1) Fix

- 5) Statistician observes $(X, Y, Z, \mathcal{P}, \epsilon)$ and decides H_0 or H_1

Questions we will address:

4) Depending on H_0 or H_1 nature generates $Z \sim \mathbb{P}_x^{\otimes m}$ or $\mathbb{P}_y^{\otimes m}$ respectively

Likelihood-free hypothesis testing (LFHT)

 $H_0: \mathbb{P}_{\mathsf{X}} = \mathbb{P}_{\mathsf{Z}}$ with (Type-I + Type II error) < 1%.

$\mathscr{R}(\epsilon,\mathscr{P})\subseteq \mathbb{N}^2$ is set of (m,n) s.t. exists test that given X, Y, Z performs versus $H_1: \mathbb{P}_Y = \mathbb{P}_Z$

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 34, NO. 2, MARCH 1988

On Classification with Empirically Observed Statistics and Universal Data Compression

JACOB ZIV, FELLOW, IEEE

... and other prior work. But only for discrete distributions and fixed

$$\mathcal{P}_{X, \mathbb{P}_{Y}} \cong 1, \quad m, n \to \infty$$

The classes ? Choices of \mathscr{P} we considered:

• $\mathscr{P}_{\mathsf{H}}(\beta, d) = \{\beta \text{-Hölder densities over } [0,1]^d \text{ with } \| \cdot \|_{\mathscr{C}^{\beta}} \leq C_{\mathsf{H}} \}$ aka β times differentiable densities.

•
$$\mathcal{P}_{G}(s) = \{\bigotimes_{j=1}^{\infty} \mathcal{N}(A_{j}) \cdot A_{j=1} \\$$

• $\mathcal{P}_{Db}(k) = \{dis \}$ This talk: focus of

- $\mathcal{P}(k) = \{ all discrete distributions on [k] \}$
- arbitrary densities on $[0,1]^d$ (with MMD separation instead of TV)
- Sobolov ollipsoid $\begin{cases} \theta_j^2 j^{2s} \le C_G \\ \le C_{Db}/k \end{cases}$

Rates vs sample complexity

Famous results for $\mathscr{P}_{\mathsf{H}}(\beta, d)$

RadiationRadiationRadiationRadiation n^{-1}

Results for \mathscr{P}_{H} , \mathscr{P}_{G} and \mathscr{P}_{Dh}

Theorem (Gerber-P.'2022)

Up to constant factors:

 $X \sim \mathbb{P}_{\mathbf{x}}^{\otimes n}, Y \sim \mathbb{P}_{\mathbf{y}}^{\otimes n}$ and $Z \sim \mathbb{P}_{\mathbf{z}}^{\otimes m} \in \{\mathbb{P}_{\mathbf{x}}^{\otimes m}, \mathbb{P}_{\mathbf{y}}^{\otimes m}\}$

 $\mathscr{R}(\epsilon,\mathscr{P}) \asymp \begin{cases} m \ge 1/\epsilon^2 \text{ and } n \ge n_{\text{GoF}} \\ \text{and } n \cdot m \ge n_{\text{GoF}}^2 \end{cases} \end{cases}$

Interpreting the results

 $\mathscr{R}(\epsilon,\mathscr{P}) \asymp \begin{cases} m \ge 1/\epsilon^2 \text{ and } n \ge n_{\text{GoF}} \\ \text{and } n \cdot m \ge n_{\text{GoF}}^2 \end{cases}$

	n _{GoF}	n _{Est}
$\mathcal{P}_{H}(\beta, d)$	$e^{-\frac{2\beta+d/2}{\beta}}$	$e^{-\frac{2\beta+d}{\beta}}$

Target: minimal *m* (as in Higgs)

$$n_{\rm Est} = n_{\rm GoF}^2 \epsilon^2$$

Interpreting the results

$\mathscr{R}(\epsilon,\mathscr{P}) \asymp$	$\begin{cases} m \ge 1/\epsilon^2 \text{ and } \\ \text{and } n \cdot m \end{cases}$	$n \ge n_{\rm G}$ $\ge n_{\rm GoF}^2$
Point	Algorithm	Lower b
$A \leftrightarrow (1/\epsilon^2, \infty)$	Binary HT	Trivial
$\mathbf{B} \leftrightarrow (1/\epsilon^2, n_{Est})$	Est + robust HT	New
$C \leftrightarrow (n_{TS}, n_{TS})$	Two-sample*	Reductior
$D \leftrightarrow (\infty, n_{GoF})$	Goodness-of-fit	New but e
Can estimate \mathbb{P}_X and \mathbb{P}_Y		

¹⁵ * $n_{\text{GoF}} = n_{\text{TS}}$ for each of these classes

The test statistic

- Based on Ingster's L^2 -comparison idea
- Discretize $[0,1]^d$ cube into $k = e^{-\frac{d}{\beta}}$ bins
- Empirical pmfs $\hat{p}_X, \hat{p}_Y, \hat{p}_7$ based on (n, n, m) observations
- Theorem: All points on the optimal tradeoff are achieved by

$$T = \|\hat{p}_{\mathsf{X}} - \hat{p}_{\mathsf{Z}}\|_{2}^{2} - \|\hat{p}_{\mathsf{Y}} - \Psi_{\mathsf{Y}}\|_{2}^{2} - \|\hat{p}_{\mathsf{Y}} - \|\hat{p}_{\mathsf{Y}}\|_{2}^{2} - \|\hat{p}_{\mathsf{Y}}\|_{$$

 $\hat{p}_{7}\|_{2}^{2}$

Note: no training, distance estimates are both wrong.

Enter Machine Learning: Practical tests

Kernel-based L₂ test (MMD)

- Real-world distributions are high-dimensional \implies discretization impractical.
- Given $\hat{\mathbb{P}}_{X}$, $\hat{\mathbb{P}}_{7}$ measure distance after applying feature map ϕ : $\mathrm{MMD}^2(\hat{\mathbb{P}}_X, \hat{\mathbb{P}}_Z) = \|\hat{\mathbb{E}}\phi(X) - \hat{\mathbb{E}}\phi(Z)\|_2^2$ (proposed for two-sample testing [Sutherland et al, ICLR'17])
- We adopt this to LFHT via the same mechanism: $T(X, Y, Z) = \|\hat{\mathbb{E}}\phi(X) - \hat{\mathbb{E}}\phi(Z)\|_{2}^{2} - \|\hat{\mathbb{E}}\phi(Z)\|_{2}^{2} - \|$
- Has the same LFHT region wrt $MMD(P_X, P_Y) \ge \epsilon$ [Gerber, Jiang, Sun, P., NeurIPS'23] Train feature map to maximize $\frac{\mathbb{E}[T|H_0]}{\sqrt{\operatorname{Var}[T|H_0]}}$ ratio (gradient descent in kernel space)

$$\hat{\Xi}\phi(Y) - \hat{\mathbb{E}}\phi(Z)\|_2^2 \quad \gtrless 0$$

LFHT for CIFAR

- $(n \approx 10^5, m \approx 10^1)$

[NeurlPS'23]

≥ 0

Here is an example: X=CIFAR10 vs Y=1/3 CIFAR + 2/3 Diffusion Model (DDPN)

Back to Higgs [Neu

- Instead of fixed two-sided error physicists use significance of discovery
- Expressed in σ 's. For the *new particle* need 5σ . Our road to 5σ ...

Interference rejection

Demodulation task in communication S

Received signal

OFDM interference is marginally Gaussian => need to exploit timefrequency structure of the interference. How?

Signal of Interest (SOI) e.g. BPSK/QPSK

Noise and interference

Example at -9 dB Signal-to-Interference Ratio (SIR)

40

30

1250 1500

Idea: Use signal (source) separation

y = s + bSOI Interference

Two types of architectures s + bY **Observed** SOI Interference

Supervised (end-to-end)

- Create many synthetic mixtures s + b
- Feed pairs (y, s) to DNN
- Force it to learn to recover *s* from *y*
- **Pros:** best performance
- Cons: need to retrain DNN for each signal-interference pair

Bayesian MAP

- Collect many samples of b
- Train a diffusion model to learn P_h
- Use MAP to recover *s* from *y*
- **Pros:** one model works for all SOI
- Cons: slow inference, performance

NeurIPS'2023: WaveNet (dilated CNN)

for Advances in Neural Information Processing Systems, 2023.

		Description
cted	Number of layers	30 residual layers with
		dilation cycle of {1, 2,
al Dilatad Canu		512} repeated three
al Dilated Conv ? ^r)		times
ver length	Total number of	4M
se addition	parameters	
se multiplication	GPU compute (training)	8 GPU days
next residual laver		

Conv1×1			
ŧ			
Output			

Additional training tricks:

Adaptive learning rate scheduler based on validation loss <u>Mixed precision training</u> with fp16 to speed up inference

T. Jayashankar, G. C. F. Lee, A. Lancho, A. Weiss, Y. Polyanskiy, and G. Wornell, "Score-based source separation with applications to digital communication signals," 36th

...

So does it work? **QPSK vs OFDM (5GNR) example**

QPSK + CommSignal5G1

WaveNet Separator + Matched Filter Demod

ICASSP'2024: Session on RF Challenge

Can we obtain further gains from other novel architectures?

1000

IEEE International Conference on Acoustics, **ICASSP Speech and Signal Processing** Signal Processing: The Foundation for True Intelligence

14-19 April 2024 COEX, Seoul, Kored

Learnable dilations and new data augmentation schemes

Number of parameters: 16M Number of GPUs: 4 x RTX 3090 GPU Compute: **13 GPU days**

Attention-based UNet and finetuning of our WaveNet baseline

Number of parameters: 350M Number of GPUs: 4 x A100 GPU Compute: 8 GPU days

New UNet architecture with bidirectional LSTM bottleneck layer

Number of parameters: 60M Number of GPUs: 1 x RTX 6000 GPU Compute: 4 GPU days

Two types of architectures y = s + b**Observed** SOI Interference

Supervised (end-to-end)

- Create many synthetic mixtures s + b
- Feed pairs (y, s) to DNN
- Force it to learn to recover *s* from *y*
- **Pros:** best performance
- Cons: need to retrain DNN for each signal-interference pair

Bayesian MAP

- Collect many samples of b
- Train a diffusion model to learn P_h
- Use MAP to recover *s* from *y*
- **Pros:** one model works for all SOI
- **Cons:** slow inference, performance

Diffusion models Images and RF

SOTA *generative model* that can learn complex structures from signal datasets

Can diffusion models capture the underlying discrete statistical structures of RF signals?

Sample from diffusion model trained on QPSK signals

Score-based Source separation (\alpha-RGS)

 $\mathbf{s} \in \mathcal{S} \subset \mathbb{C}^D, \mathbf{b} \in \mathbb{C}^D$ statistically independent sources

MAP Estimation Given y = s + b

$$\hat{\mathbf{s}} = \underset{\mathbf{s}\in\mathcal{S}:\mathbf{y}=\mathbf{s}+\mathbf{b}}{\operatorname{arg\,max}} p_{\mathbf{s}|\mathbf{y}}(\mathbf{s}|\mathbf{y}) = \underset{\mathbf{s}\in\mathcal{S}}{\operatorname{arg\,min}} - \log P_{\mathbf{s}}$$

Gradient Descent Estimate $\bar{\mathbf{s}} = \mathbf{s} + \epsilon, \ \epsilon \to 0$

$$\mathbf{s}_{i+1} \leftarrow \mathbf{s}_i + \underbrace{\nabla \log p_{\mathsf{s}}(\mathbf{s}_i)}_{\text{Score}} - \nabla \log p_{\mathsf{b}}(\mathbf{s}_i) + \nabla \log p_{$$

<u>**Randomized Gaussian Smoothing with an** α **-posterior** (α **-RGS**)</u>

Diffusion Models Model **unknown priors (score functions)** over s and **Gaussian Smoothing** Use noise variance levels α_t and α_u α -posterior Reweight likelihood with weight $\alpha = \omega$

$$\mathcal{L}(\theta) \triangleq -\mathbb{E}_{t,\mathbf{z}_s} \left[\log p_{\tilde{\mathbf{s}}_t} \left(\tilde{\mathbf{s}}_t \left(\theta \right) \right) \right] - \boldsymbol{\omega} \mathbb{E}_{u,s}$$

Results: improving SOTA

Other algos based on approximating MAP via score-learning

RRC-QPSK SOI + OFDM (QPSK) Interference

Averaging over regularization + α -posterior give us an edge

Conclusion (i) We studied signal detection (hypothesis testing) when hypotheses are only specified through examples.

(*iii*) **Next**: Study notion of regret or instance-optimality.

- (ii) We saw minimax optimal bounds and practical algorithms
- (iv) **More generally:** Study parameter estimation, confidence intervals, channel coding, constellation design,...

Thank you!