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1 The Context
In algebraic graph theory, combinatorial matrix theory, infection processes on graphs, and extremal combi-
natorics, the best modern results are often found using an interdisciplinary approach, leveraging tools and
techniques from these other fields. The tools developed in solving these types of problems are often strong
and transferable. Algebraic techniques, a deeper understanding of graph symmetries, probabilistic techniques
and structural extremal results show great promise to develop a deep and general theory that encompasses
many graph and hypergraph classes all at once.

This workshop highlighted recent results in these areas that connect to research topics and projects for the
PIMS-funded Collaborative Research Group (CRG) on “Movement and symmetry in graphs”. Drawing to-
gether researchers from around the world, the event served as a showcase for the work of this CRG. Although
its funding period is over, the CRG continues to develop a network of excellence around these topics centred
in the prairie provinces and with women and other underrepresented minority groups at its core, as leaders
and mentors. The workshop served to create connections through which students and post-docs who are
working in this field have begun to build collaborations and develop their career goals. It was a culminating
event of the Collaborative Research Group, whose funding ended in the spring of 2024.

The work of the Collaborative Research Group, and therefore this workshop, was focused around four
topics relating to movement and symmetry in graphs: (1) Algebraic Graph theory, (2) Combinatorial Matrix
Theory, (3) Graph and Hypergraph Infection and Percolation, and (4) Extremal Combinatorics. These are
elaborated upon below.

1.1 Algebraic Graph Theory
Algebraic graph theory is a growing field as researchers come to appreciate the powerful techniques that it
provides. The workshop focused on two approaches in algebraic graph theory: representing the graph as a
matrix and using matrix properties to understand the graph; and using the symmetries of the graphs to gain an
understanding of it. These two approaches bring together many areas of mathematics. One of the challenges
is that it requires a strong background in algebra, group theory and matrix theory, but the advantage is that
the tools developed are strong and transferable.

In the first approach, the general problem is to study the relationships between algebraic and combinatorial
parameters for graphs through a matrix representation. These results can be interpreted as results on designs

1



2

and often have applications in extremal combinatorics. The eigenvalues of Cayley graphs can be determined
using group theory and representation theory. Using group theory to understand graphs is the focus of this
area.

The second approach involves understanding the symmetries of a graph, which can give insight into the
graph’s properties. Often the symmetry group of a graph can give a bird’s eye view of the graph, so structures
can be understood in a more general way. Symmetries allow us to apply some of the powerful tools of
permutation group theory to the study of graphs and their properties.

1.2 Combinatorial Matrix Theory
One of the most famous problems in combinatorial matrix theory is the Inverse Eigenvalue Problem. The
objective of this problem is to describe all possible eigenvalues of a given set of symmetric matrices with a
fixed zero-nonzero pattern. This problem is notoriously difficult and a general result seems to be far out of
reach, but there are simpler problems that could be considered. For example, a group based in Regina worked
on a project to determine which multiplicities of eigenvalues can be obtained. One question that this work
asked is for which graphs is there a matrix that has only two eigenvalues and these eigenvalues have the same
multiplicity. The Regina group showed that this holds for the hypercube; amazingly this fact was later used
by Huang to prove the famous sensitivity conjecture.

Problems in combinatorial matrix theory like this one often require tools and knowledge from different
areas, such as graph theory, linear algebra, group theory and probability. This is where an inter-disciplinary
approach is essential.

1.3 Graph and Hypergraph Infection and Percolation
There are many different processes that model the spread of an infection or the flow of information through a
network, for example bootstrap percolation, zero forcing and various notions of hypergraph infection.

Graph infection and percolation (and similar problems) can be studied on Cayley graphs and on vertex-
transitive graphs, as well as on hypergraphs that have strong symmetry properties. Infection and percolation
provide excellent entry-level research problems (for undergraduate and Master’s students in particular) that
continue to inspire and attract researchers from underrepresented groups. There are also an abundance of
deeper questions about the behaviour of various infection processes on infinite Cayley graphs in relation
to properties of the underlying graph. In the context of random graphs, there is often a strong connection
between critical probabilities for full infection under infection processes in a random regular graph and in a
related infinite tree.

Hypergraphs can be frustratingly general objects to work with, and it is often difficult to extend results on
graphs to the hypergraph setting. The workshop also presented recent work and open problems in this area.

In the area of bootstrap percolation, there has been some success achieving extremal results using linear
algebraic and polynomial-method techniques. Applying these methods to a larger variety of graphs with sym-
metry, generalizing the approaches, and studying closely-related problems for weak-saturation of graphs are
avenues for research that were included in presentations, demonstrating work at the intersection of algebraic
combinatorics, infection processes and extremal combinatorics.

1.4 Extremal Combinatorics
Extremal properties of infection processes and structural properties of graphs can imply small percolating
sets. Many results in this area have consisted of conditions on the minimum degree of a graph and the
resulting extremal structures are often highly asymmetric. New results in this area may make use of further
structural properties and develop an understanding of how global symmetry properties can influence the range
of values for measures of these infection processes.

In the realm of extremal combinatorics, there is often a huge gap in the understanding of what can happen
in graphs compared to what can happen in hypergraphs. One example of this are Turán numbers, the extremal
numbers for edges in a (hyper)graph forbidding a fixed (hyper)graph. For graphs, Turán numbers are well-
understood in terms of the chromatic number via the Erdős-Stone-Simonovitz theorem. For hypergraphs,
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much less is known and there are many small 3-uniform hypergraphs for which the asymptotic behaviour of
the Turán number is not known precisely.

1.5 Summary of context
As a culminating event of our PIMS-funded Collaborative Research Group (CRG) on “Movement and sym-
metry in graphs”, the objective of this workshop was to highlight and explore new research (both within the
CRG and from other researchers) on problems central to the work of the CRG.

The workshop was focused around early-career researchers (including students and post-doctoral fel-
lows). It gave them an opportunity to showcase their work in front of world-renowned leaders in the field,
also allowed them to hear about new research by those same experts, and also gave them the opportunity to
collaborate in small groups with senior researchers on problems central to the field. This established con-
nections through which collaborations are underway that will assist these researchers to develop their career
goals.

2 Structure of the Workshop

2.1 Outline
In advance of the workshop, we reached out to participants to ask if they would be willing to present open
problems and/or lead working groups on open problems related to the main topics of the workshop.

Monday was reserved for introductory talks that provided background for the open problems that had
been proposed for the working groups. These talks encouraged participants to move out of their comfort
zones, and to consider working on problems that were not necessarily within their main area of expertise.

On both Monday and Tuesday evenings we held a series of 5- to 10-minute “lightning talks”. We made
every effort (we think successfully) to make these sessions light-hearted, low-pressure, and supportive. They
were broadcast over zoom, but not recorded. These served a couple of purposes:

• on Monday evening, some additional open problems were presented for the consideration of partici-
pants; and

• for early-career participants in particular, this served as a bit of an ice-breaker, providing a less-formal
context in which to present key ideas of their research to the group.

On Monday evening, we circulated a google form on which we listed all of the open problems that had
been proposed for working groups, and asked participants to rank the top 3 working groups that they would
be interested in joining during the week, in order of preference. On Tuesday morning, we determined the 6
proposals that had received the most interest from participants, and announced that these would be the basis
for the working groups that would operate during the remainder of the week, beginnning that afternoon.

One of our online participants, Nathan Lindzay, coordinated a working group for the online participants
that used gathertown and other resources to work on a problem he had chosen. This was made more chal-
lenging by the wide variety of time zones involved, and also by American Thanksgiving and other meetings
and commitments that created time conflicts for participants.

After 7 additional 20-minute talks by ECRs (almost all postdoctoral fellows) showcasing their research
during the rest of Tuesday morning and early afternoon, the working groups held their first meetings. Wednes-
day morning included more time for working groups as well as 3 more 20-minute talks by ECRs; the after-
noon was free for excursions in and around Banff, and many took advantage of the beautiful snow-covered
mountain hiking opportunities and warm temperatures, although low-hanging clouds impeded some views.

On Thursday morning working group leaders gave brief reports on their progress, and an opportunity was
provided for participants to switch working groups if they wished to do so. There were 6 more 20-minute
talks, and more time for working groups to discuss their problems.

For those who did not leave early, Friday morning held two more 20-minute talks, and more progress
reports and working time for the working groups.
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2.2 Participant demographics
After some late cancellations, there were 38 in-person participants at the workshop. An additional 21 people
signed up as virtual participants, of whom 5 gave talks.

More than half of the in-person participants were female (20 of 38, 52.6%). One of the organisers had a
15-month-old baby, who accompanied her along with a caregiver. We will not attempt to assess most other
EDI-categories as we are not necessarily aware of how participants self-identify. However, we can address
current locations and career stages.

Given that many of our participants were ECRs, including students and postdoctoral fellows, current
locations are somewhat transitory. However, the latest information we have is that 26 of our 38 in-person
participants are currently based in Canada. Given our object of showcasing research and students and post-
doctoral fellows from the prairie provinces, this over-representation was expected and appropriate. Another
5 are currently in the USA; 3 in Europe; 1 in Australia; 1 in New Zealand; 1 in India; and 1 in Brazil.

In-person participants consisted of:

• MSc students: 1; PhD students: 4

• Post-doctoral fellows: 12

• Assistant Professors: 4; Associate Professors: 5

• Professors: 12

2.3 Challenges and Opportunities of the Timing
The workshop took place November 24–29, 2024.

Challenge: American Thanksgiving. This was during the week of American Thanksgiving, which
meant that a number of potential participants had other priorities that prevented their participation. It also
hindered virtual participation during parts of the week, from Americans who chose to join us virtually.

Opportunity and Challenge: CMS Winter Meeting. The Canadian Math Society (CMS)’s annual
winter meeting was originally scheduled to be held in Vancouver on December 6–9, 2024. Late in 2023 (after
our workshop had been scheduled), Taylor Swift announced dates for her concert tour that included a stop
in Vancouver on that same weekend. To avoid excessive difficulty in securing hotel rooms, the CMS winter
meeting dates were moved to November 29–December 2.

Many of our participants wanted to attend the CMS meeting, and in fact many were invited to speak in a
variety of scientific sessions at the meeting that were relevant to the topics of our workshop. These included
two sessions on Algebraic Graph Theory, one on Cayley Graphs, and one on The Theory of Pursuit-Evasion
Games on Graphs.

The adjacent dates and reasonable proximity of this BIRS workshop and the CMS meeting meant that
it was convenient to combine the two events into a single trip. Particularly for researchers coming from
abroad or from eastern North America, this opportunity made the long trip more worthwhile. However,
many participants wanted to attend the public lecture in Vancouver on the evening of Friday, November
29, or simply to have time to settle in in Vancouver before scientific sessions began early on the morning
of Saturday, November 30. The time required to reach Calgary, get through airport security, and travel to
Vancouver resulted in a significant number of participants leaving Banff early Friday morning and missing
the Friday events.

Challenge and Opportunity: Virtual Work. Although this was impacted in some ways by the timing
of our workshop, it is more an effect of the changes Covid brought to the world. We are accustomed to being
able to carry out work virtually from almost anywhere.

For a large number of participants, the week of the workshop was very near the end of the semester. This
made some teaching-related commitments harder to work around, and some participants were running some
or all of their classes remotely during the week. Others had meetings or other commitments that 20 years
ago they would have declined or rescheduled due to being out of town, but now felt obligated to participate
in virtually. This meant that the in-person participants were not always as fully “present” in the workshop as
might have been the case in the past.
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The flip side of this, of course, was the relative ease with which virtual participants were able to contribute
to the workshop. Successfully including virtual participants from a wide variety of time zones, many of whom
did not come at least in part due to other things they needed to be doing during the week, was a challenge that
we did not really solve. Largely their participation consisted of providing some talks and virtually attending
talks that fit into their schedules.

Challenge: Visas. This challenge did not relate to the time of year, but the speed at which the Canadian
government currently processes visas was a problem for several of our participants that we think has changed
over time. We had two late cancellations by post-doctoral fellows due to visa applications that were not
approved within the available time. At least one of these had applied for their visa more than 5 months
in advance of the workshop, but despite multiple follow-up attempts received no useful updates and was
ultimately forced to cancel their plans.

3 Open Problems Proposed
We acknowledge with gratitude that much of the writing in this section was contributed by those who pro-
posed the topics.

3.1 Simple Oriented Graphs
This problem was proposed by Chris Duffy. It was not chosen for a working group but may nonetheless be
the subject of joint work by workshop participants or others in the future.

Let G be an oriented graph. A set S ⊆ V is
−→
P 3-convex when for every 2-dipath u, v, w: if u, v ∈ S, then

v ∈ S. The convex hull of a set of vertices can be found via a bootstrap percolation process, which proceeds
according to the following rule: a vertex is on in Sk when it is on in Sk−1 or at least one out-neighbour and
one in-neighbour are on in Sk−1. An oriented graph is called simple when the convex hull of any arc is the
entire vertex set. In general, it is NP-complete to decide if a graph can be given an orientation to be simple.
There is a known characterisation for when a 2-tree admits a simple orientation.

Open Problem 1. Find some classes of graphs for which we can nicely characterise which graphs in the
family admit an orientation as a simple oriented graph.

Open Problem 2. Which Cayley digraphs are simple?

Open Problem 3. Find necessary and sufficient conditions for a planar graph to admit a simple orientation?
Outerplanar?

Open Problem 4. Find an tourament T on n < 80 vertices such that if P is a simple oriented planar graph,
then P → T .

3.2 Transitive groups with large intersection density
This topic was proposed by Sarobidy Razafimahatratra, and was selected for a working group. The members
of the group were Sarobidy Razafimahatratra, Raghu Pantangi, Roghayeh Maleki, Shonda Dueck, Ted Dob-
son, Francis Clavette, Xiaohong Zhang, Kyle Yip

Given a finite transitive group G ≤ Sym(Ω), a set F ⊂ G is intersecting if, for any g, h ∈ G, there
exists ω ∈ Ω such that ωg = ωh. The intersection density ρ(G) is the maximum ratio of |F|

|Gω| , where F runs
through all intersecting sets of G and Gω is the stabilizer of ω ∈ Ω in G.

The problem of finding the intersection density of a finite transitive group G ≤ Sym(Ω) is equivalent to
finding the size of the largest cocliques in the Cayley graph ΓG := Cay(G,DG), where DG is the set of all
derangements of G. The graph ΓG is the so-called derangement graph of G.

In [6], it was proved that if G ≤ Sym(Ω) is a transitive group with |Ω| ≥ 3, then ρ(G) ≤ |Ω|
3 . This upper

bound is sharp since it is attained by the groups:

1. TransitiveGroup(6,4),
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2. TransitiveGroup(18,142),

3. TransitiveGroup(30,126), and

4. TransitiveGroup(30,233).

In particular, the group TransitiveGroup(6,4) is permutation equivalent to Alt(4) acting on the 2-
subsets of {1, 2, 3, 4}, which is the smallest transitive group with intersection density larger than 1. The
derangement graphs of the transitive groups in (1)-(4) are all complete tripartite. Moreover, if G is one of the
groups in (1)-(4), then there exists a complete block system or a system of imprimitivity B of G such that the
induced action G of G on B is permutation equivalent to TransitiveGroup(6,4).

The aim of this project is to answer the following questions and problems.

Open Problem 5 (∗∗). Find more examples of transitive groups whose derangement graphs are complete
tripartite.

Open Problem 6. If ρ(G) = |Ω|
3 , then is ΓG always complete tripartite?

Open Problem 7. If G ≤ Sym(Ω) is transitive such that ΓG is complete tripartite, does G always “factor
through” TransitiveGroup(6,4)?

In [5], it was shown that if G ≤ Sym(Ω) is innately transitive (i.e., G admits a transitive minimal normal
subgroup) with |Ω| ≥ 2 and |Ω|

4 < ρ(G) ≤ |Ω|
3 , then |Ω| = 3. It is interesting to ask how this result

generalizes to transitive groups, in general.

Open Problem 8. Is there a transitive group G ≤ Sym(Ω) such that |Ω|
4 < ρ(G) < |Ω|

3 ?

3.3 Inverse eigenvalue problems
This topic was proposed by Shaun Fallat and Shahla Nasserasr, and was selected for a working group. Group
Members were Shaun Fallat, Shahla Nasserasr, Ada Chan, Mahsa Shirazi, Johnna Parenteau, Hermie Mon-
terde.

Many problems were identified by the leaders of this group. However, after their initial discussion, it was
decided that the group would begin by considering the spectra of generalized Laplacians.

Let SL(G) be the set of n× n real symmetric matrices A =
[
ai,j

]
such that

ai,j


< 0 if {i, j} ∈ E(G),

= 0 if {i, j} /∈ E(G), i ̸= j,

−
∑

k:k∼i ai,k if i = j.

Analogous to the inverse eigenvalue problem for graphs (IEP-G), we are interested in an inverse eigen-
value problem among matrices in the class SL(G), and abbreviate this problem as IEPL (inverse eigenvalue
problem for generalized Laplacian matrices associated with a graph G). To this end, we say a collection
of real numbers 0 < λ2 ≤ λ3 ≤ · · · ≤ λn, is Laplacian realizable if there exists L ∈ SL(G) with
σ(L) = {0, λ2, λ3, . . . , λn}.

For a given connected graph G on n vertices let L ∈ SL(G) with σ(L) = {0(1), λ(m2)
2 , λ

(m3)
3 , . . . , λ

(mq)
q },

where λ
(mi)
i means the eigenvalue λi of L has multiplicity mi (in this case we have 1 +

∑
mi = n). If fur-

ther we assume that 0 < λ2 < λ3 < · · · < λq , then the ordered multiplicity list for L is defined to be
(m1 := 1,m2, . . . ,mq).

Open Problem 9. Consider all possible ordered multiplicity lists over matrices in the set SL(G) and deter-
mine the smallest q possible for a realized Laplacian spectrum.
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3.4 Second Common Neighbourhood Conjecture
This topic was proposed by JD Nir, and was selected for a working group. Working group members were JD
Nir, Gabriel Verret, Andrii Arman, Candida Bowtell, Emily Heath, Jeanette Janssen, Karen Gunderson.

Definition 10. A set of vertices S ⊆ V (G) is called dominating in G if for each v ∈ V (G), v ∈ S or u ∈ S
for some edge (u, v) ∈ E(G).

Let ∂(G) be the number of dominating sets in G.

Theorem 11. If S ⊆ V (G) is not a dominating set in G, then S is a dominating set in G.

Theorem 12 (Wagner, 2013). If G is a graph on n vertices then

∂(G) + ∂(G) ≥ 2n.

This bound is tight for every n, and we can classify the extremal examples.

Theorem 13 (Keough-Shane, 2018). If G is a graph on n vertices then

∂(G) + ∂(G) ≤ 2n+1 − 2⌊
n
2 ⌋ − 2⌈

n
2 ⌉−1.

Conjecture 14 (Keough-Shane, 2018). The extremal graph is the balanced complete bipartite graph, K⌈n
2 ⌉,⌊n

2 ⌋,
or its complement, and

∂(G) + ∂(G) ≤ 2(2⌊
n
2 ⌋ − 1)(2⌈

n
2 ⌉ − 1) + 2.

Definition 15. Given a (simple) graph G and a set S ⊆ V (G), the common neighborhood of S is the set

C(S) = {v ∈ V (G) | ∀s ∈ S, v ∼ s}.

Definition 16. Given a (simple) graph G and a set S ⊆ V (G), the second common neighborhood of S is the
set

C2(S) = C
(
C(S)

)
.

Define S to be the collection of nonempty sets of vertices with nonempty common neighborhoods:

S = {S ⊆ V (G) | S ̸= ∅ and C(S) ̸= ∅}

Conjecture 17 (Second Common Neighborhood Conjecture).∑
S∈S

|C(S)| ≤
∑
S∈S

|C2(S)|

Theorem 18. The second common neighborhood conjecture holds for complete bipartite graphs.

Let NDom(G) = {S ⊆ V (G) | S does not dominate G}.

NDom(G) = {S ⊆ V (G) | C(S) ̸= ∅} = S ∪ {∅}

We use this to show
n(ð(G)− 1) =

∑
S∈S

n ≥
∑
S∈S

|C(S)|+ |C2(S)|

because C(S) and C2(S) are disjoint. Then if the second common neighborhood conjecture holds,

n(ð(G)− 1) ≥
∑
S∈S

|C(S)|+ |C2(S)| ≥ 2
∑
S∈S

|C(S)|

Now ∑
S∈S

|C(S)| =
∑

v∈V (G)

2dG(v) − 1
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as we can count ordered pairs (v, S) where v ∈ C(S) in two ways.

n(ð(G) + ð(G)− 2) ≥ 2

 ∑
S∈SG

|CG(S)|+
∑
S∈SG

|CG(S)|


= 2

 ∑
v∈V (G)

2dG(v) − 1 +
∑

v∈V (G)

2dG(v) − 1


= 2

∑
v∈V (G)

2dG(v) + 2n−1−dG(v) − 2

≥ 2n
(
2

n
2 + 2

n
2 −1 − 2

)
So

n(ð(G) + ð(G)− 2) ≥ 2n
(
2

n
2 + 2

n
2 −1 − 2

)
or

ð(G) + ð(G) ≥ 2
n
2 +1 + 2

n
2 − 2

Compare to:

Theorem: ð(G) + ð(G) ≥ 2
n
2 + 2

n
2 −1

Conjecture: ð(G) + ð(G) ≥ 2
n
2 +2 − 4

Open Problem 19. Solve the second common neighbourhood conjecture for other interesting families of
graphs.

3.5 Eigenvalues and eigenvectors of graphs
This topic was proposed by Krystal Guo, and was selected for a working group. The members of the working
group were Krystal Guo, Karen Meagher, Himanshu Gupta, Bobby Miraftab, Jozsef Balogh, Harmony Zhan,
and Soffı́a Árnadöttir.

Graphs with three distinct eigenvalues
If a connected graph has only 1 distinct eigenvalue, then it has to have no edges. If it has two distinct

eigenvalues, then it must be a complete graph. If a connected graph has 3 distinct, then apparently many
things can happen.

If it is regular, it has to be strongly regular. We can tell if a graph is regular from the spectrum; we can
find the average degree and the graph is regular if and only if this number is an eigenvalue. No connected
regular graph can be cospectral to a connected irregular graph.

Open Problem 20 (De Caen). Do connected graphs with three distinct eigenvalues have at most three valen-
cies?

There are only finitely many known examples of graphs with three distinct eigenvalues, but they are not
known to be finite in number. If there are at most three valencies, the partition by valency must be equitable.
It is also open to find a graph with three distinct eigenvalues where the partition by valency is not equitable,
or show it is not possible.

We note that the connectedness is an important requirement. All complete bipartite graphs with m edges
have the same eigenvalues and, thus, taking disjoint unions can produce many different degrees. If there are
4-distinct eigenvalues, then any number of different degrees is possible.

Let X be a connected graph where A := A(X) has three distinct eigenvalues. Suppose the distinct
eigenvalues are θ0 > θ1 > θ2.

By expanding the minimal polynomial, we would (eventually) get

(A− θ1I)(A− θ2I) = vvT

where v is an eigenvector for θ0.
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d(u) + θ1θ2 = v(u)2

where d(u) denotes the degree of u. Since θ1, θ2 do not depend on the choice of vertex, the number of
different degrees

Does the graph exist?
Van Dam, Koolen, Xia leave a morsel for us in [2]. They write

A putative parameter set with four valencies (in fact, the one with the smallest number of vertices
according to 15-year old, but unverified, computations) is the following one on 51 vertices and
spectrum {30(1), 3(20),−3(30)}. The computations show that a graph with this spectrum must
have valencies 13, 18, 34, and 45, occurring 15, 5, 30, and 1 times, respectively. In fact, using
the techniques of [9] it can be shown that in this particular case, the valency partition is also
equitable, with quotient matrix 

2 0 10 1
0 0 18 0
5 3 25 1
15 0 30 0

 .

Quite a bit of this graph is therefore determined. Besides the trivial parts, one can show that
the incidence structure between the five vertices of valency 18 and 30 vertices of valency 34 is a
2-(5, 3, 9) design, and there is only one such design: three times the full design of all triples on
five points. We leave it as a problem to the reader to finish the (de-)construction.

Pjotr Buys had the idea to expand also the minimal polynomial itself and get

2e(Γ(u)) = (θ0 + θ1 + θ2)d(u) + θ0θ1θ2

where e(Γ(u) is the number of edges in the graph induced by the neighbours of u. Despite our best efforts,
we did not find it and would be interested in methods of showing that it does not exist. It’s possible that if
there are 4 distinct degrees and only 3 distinct eigenvalues, then the partition cannot be equitable.

Graphs with some eigenvalues
With a student, V. Schmeits, Krystal Guo looked at a variant of perfect state transfer in discrete-time

quantum walks in [3]. In the course of their research, they needed to find graphs with very special eigenvalues.
Let Ã be the normalized adjacency matrix; that is

Ã = ∆− 1
2A∆− 1

2 .

Open Problem 21. Characterise all graphs whose normalized adjacency matrix has its distinct eigenvalues
contained in the set {±k,±k

2 , 0} for some k > 0.

They found all examples in distance-regular graphs that appear in the tables of [1] and we determined all
examples among bipartite incidence graphs of symmetric designs.

Spectrally central vertex of a graph
In [7], the authors define the notion of a central vertex in a graph, based on continuous-time quantum

walks. For a graph X with spectral decomposition

A(X) =: A =

d∑
r=0

θrEr

the vertex centrality of a vertex v to be
d∑

r=0

(eTv Er1)
2

where 1 is the all ones vector. Then, the central vertex is the one maximizing centrality.
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One can show that the centrality measures are the diagonal entries of the matrix

M =

d∑
r=0

ErJEr.

This is the orthogonal projection of J the all ones matrix into the Bose-Mesner algebra of the graph.
If a graph is regular, then J is in Bose-Mesner algebra so projects onto itself; that is J =

∑d
r=0 ErJEr.

Thus all vertices have the same centrality.
Isolated vertices have huge centrality. Better to consider connected graphs.
Note that the average mixing matrix M̂ is the matrix which sends a vector v to the diagonal of

∑d
r=0 ErD̂(v)Er

where D̂(v) is v placed on the diagonal of a diagonal matrix. So M̂ev will give the diagonal of the matrix∑d
r=0 ErDvEr (which we must sum the entries of).

1. If a graph is not regular, it is still possible for all centrality measures to be equal? That is, is it possible
that the orthogonal projection of J has constant diagonal? This would be more interesting as a question
about the projections.

2. When does it coincide with other spectral centers?

• The average mixing matrix is M̂ =
∑

r Er ◦Er. We can rank the vertices based on the diagonal
entries of M̂ .

• We can rank the vertices based on the the entries of the Perron vector.

• Maximum degree.

• Every tree has a central vertex or edge, which are fixed by every automorphism. When is the
central vertex also “central” with respect to another ordering?

Local complementation and eigenvalues
The motivation comes from quantum stabilizer codes used for quantum error correction. Local com-

plementation in graphs corresponds with local Clifford equivalence in graph states (stabilizer states with an
underlying graph structure).

Let G be a graph and v a vertex of G. The local complementation of G at v is the graph Gv obtained
by complementing the neighbourhood of v. Let S be a matrix where rows and columns are indexed by the
vertices of G:

S(G)v,w =


0, if v = w;

1, if v ∼ w;

−1, otherwise.

If G1 is obtain by G2 by local complementation at v, let X be the matrix with 1s everywhere except for the
principal submatrix corresponding to Γ(v), where it is −1. Then S(G1) = X ◦ S(G2).

This operation does not preserve the eigenvalues of S, but perhaps we can pose the question of what this
does to the spectrum and whether or not equivalence classes of graphs under local complementation share
spectral properties with respect to the Seidel matrix.

3.6 Eternal Domination Problems
This topic was proposed by Gary MacGillivray, and was selected for a working group. The members of the
working group were MacKenzie Carr, Nancy Clarke, Gary MacGillivray, and Joy Morris.

A dominating set for a graph is a set of D of vertices such that every vertex not in D is adjacent to a
vertex in D. The domination number of a graph is the minimum cardinality of a dominating set for the graph.
Lured by the prospect of eternal world domination leading to plenty of NSERC funding, this group worked
on several problems related to domination.

An eternal dominating collection for a graph is a collection of dominating sets all having the same car-
dinality, such that every vertex of the graph not contained in a given dominating set D in the collection, is
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contained in another dominating set in the collection that can be reached from D by moving some subset
of the vertices of D along edges of the graph. This concept can also be defined in game-theoretic terms.
The eternal domination number for a graph is the minimum cardinality of the dominating sets in an eternal
dominating collection.

A paired dominating set for a graph is a dominating set that induces a matching in the graph. An eternal
paired dominating collection, as well as the paired domination number and the eternal paired domination
number, can be defined analogously to an eternal dominating number, the domination number, and the eternal
domination number.

This group considered two problems:

Open Problem 22. How does the eternal paired domination number compare to other domination parame-
ters, in the case of interval graphs?

and

Open Problem 23. How does the eternal domination number compare to the domination number for Cayley
graphs on dihedral groups?

3.7 Walking to MDS codes
This topic was proposed by Brett Stevens, and was selected for a working group. The working group members
were Brett Stevens, Peter Dukes, Robert Bailey, and Alice Lacaze-Masmonteil.

Background and introduction

Definition 24. Let b be a positive integer. A code CFb
q

is said to be an FqFqFq-linear code of length n over Fb
q if

it is a linear subspace of the vector space Fnb
q . Equivalently it is an Fq-linear code over Fb

q if the code CFq is
a linear code of length nb over Fq .

Notice that both CFq and CFb
q

refer to the same set of codewords, but over the alphabets Fq and Fb
q ,

respectively. Therefore, the codewords of CFb
q

of length n over Fb
q can also be viewed as codewords of length

nb over Fq . It is worth pointing out that the code symbols of CFb
q

can be regarded as elements in the field Fqb .
However, linearity over this field is not assumed.

One common construction of Fq-linear codes is from cyclotomy. Let p = rb+ 1 be a prime and let G be
the subgroup of order r in the multiplicative group, F∗

p. Define a near resolution of Fp to be {0} together with
all the cosets of G. Developing these in the additive group of Fp gives a Near Resolvable Design. For any
field Fq , define a p×p(b+1) block matrix where the rows are indexed by the elements of Fp and the columns
of the ith block are the incidence vectors of the sets in the ith near resolution class, including the set of size
one. Then delete one row and every column which has a 1 in the deleted row. This gives a p− 1× pb block
matrix with blocks of b columns each which generates a Fq-linear code with n = p, and qrb codewords. If
every p− 1× p− 1 submatrix resulting from any r of the blocks is full rank then the code CFb

q
is Maximum

Distance Separable over Fb
q , that is it Singlton Defect 0: |CFb

q
| = (qb)n−d+1

For example if p = 5 and r = 2 then the Near Resolvable Design has resolution classes

R0 = {0}, {1, 4}, {2, 3}
R1 = {1}, {2, 0}, {3, 4}
R2 = {2}, {3, 1}, {4, 0}
R3 = {3}, {4, 2}, {0, 1}
R4 = {4}, {0, 3}, {1, 2}

and first yields matrix

M =


1 0 0 0 1 0 0 0 1 0 0 1 0 1 0
0 1 0 1 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 1 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 1 0 1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0 1 0 1 0 1 0 0


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After removing the first row and all columns with a 1 in the first row we have

M =


1 0 1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0 1
0 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 0 1 1 0


The proof that this is MDS uses the fact that the union of any two resolution classes is a Hamilton path (indeed
when r = 2 then this construction gives the one-point deletion of a perfect 1-factorization) and deleting the
first row is equivalent to deleting the point 0 and this the union is two disjoint paths. traversing each path
from one end to the other gives a series of row operations which, one by one, reduce the number of 1s per
row to exactly one. This is a permutation matrix and thus has full rank. Xu et al. proved that for r = 2 then
the code being least density and MDS is equivalent to the existence of a perfect 1-factorization. We note that
this path traversal proof means that these codes are MDS over Fb

q for any field Fq

When r > 2 very little is known. Louidor and Roth prove several things [4]: When r = 3 and 2 is
primitive in Fp, then the code is MDS over Fb

2; When r = 4 (b ̸= 3) and 2 is primitive in Fp then the
code is MDS over Fb

2; For any r if q is primitive in Fp and q is sufficiently large then the code is MDS over
Fb
q . Because each result only applies to the codes over specific fields, the proofs cannot be of the “path-

traversing/row-reduction” type.

Open Problem 25. Is there a “path-traversing/row-reduction” type proof for any p = rb+1 when p is prime
and r > 2.

Open Problem 26. What is the proper generalization of perfect 1-factorizations to r-uniform hypergraphs.
If we want a perfect 1-factorization to still correspond to MDS Fq-linear codes then it will require a property
of the union of r factors.

3.8 Online working group – Cliques of the Birkhoff Polytope
This problem was proposed by Nathan Lindzay and was worked on by online participants.

Let C ⊆ Sn be the set of all permutations of {1, 2, . . . , n} that have precisely one cycle. Let Cay(Sn, C)
be the (normal) Cayley graph of the symmetric group Sn generated by C. The 1-skeleton of a polytope P is
the graph G = (V,E) whose vertices V are the vertices of P and whose edges E are the edges of P . The
Cayley graph above is isomorphic to the 1-skeleton of the Birkhoff polytope, i.e., the convex hull of n × n
permutation matrices.

Open Problem 27. Give good lower and upper bounds on the size of a maximum clique of Cay(Sn, C).
For example, a lousy lower bound is given by a latin square, i.e., the cyclic group Zn when n = p.

An exponential upper bound of O(cn) for some c > 1 is known combining previous work with the clique-
coclique bound (e.g., https://arxiv.org/abs/1702.05773). The truth should be in the middle.
Purely Fourier-analyical/spectral methods don’t have a prayer here I believe.

An analogous problem can be formulated for perfect matchings of K2n where one takes the polytope
to be the convex hull of all characteristic vectors of perfect matchings of K2n. Its 1-skeleton lives in an
association scheme. Showing that the maximum cliques of this 1-skeleton are small would have algorithmic
applications.

Here are some relevant papers:

• https://arxiv.org/abs/2212.12655

• https://www.math.ucla.edu/˜pak/papers/bir.pdf

• https://arxiv.org/abs/1702.05773

• https://people.cs.uchicago.edu/˜lenacore/pdfs/birkhoff.pdf

Much more is known about the independence number. Good lower and upper bounds are known, but the
bounds are not tight (even asymptotically).

Open Problem 28. Give a tight bound on the independence number of Cay(Sn, C) as n → ∞.

Fourier-analytical/spectral methods might have a chance here.
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3.9 Other open problems proposed
We did not record all of the open problems that were mentioned but not selected for working groups, but will
touch on some of them briefly.

Jozsef Balogh presented a talk on Monday with open problems about sunflowers in set systems with small
VC-dimension. Gabriel Verret and Bobby Miraftab gave a joint talk in which they presented problems on
locally finite graphs with eigenvectors of finite support.

Chris Duffy gave a lightning talk in which he presented the topic of distance 2 convexity in oriented
graphs. Peter Dukes presented problems related to balancing graphs, matrices, and polynomials in another
lightning talk.

Ted Dobson gave a lightning talk in which he mentioned a new technique he has been working on that
he hopes will lead to progress on several problems including the Cayley Isomorphism problem. He invited
participants to connect with him if they were interested in participating in this work.

4 Working Group Progress and Other Outcomes
Given the limited space available to us, we will be brief in outlining preliminary progress by the working
groups. We do want to note that feedback received by the organisers about the working groups was uniformly
enthusiastic. Organisers participated in many different working groups, so witnessed much of this positive
energy and success ourselves. Participants enjoyed the time spent in working groups, felt the topics were
well-formulated and interesting to work on collaboratively, and appreciated the time that working group
leaders had put into preparing for the groups. While some groups and some proposed problems achieved
more obvious rapid progress than others, everyone seemed to feel good about what they had learned and
achieved in their working groups. Indeed, the one mild critique we heard was that some participants would
have appreciated more time in the schedule for the working groups. We were enormously pleased with the
success of this aspect of the workshop.

Recognising that sometimes working groups do not go well and are not fruitful, we felt that the time we
had chosen to allocate to working groups was judicious. We expect that most of the collaborations initiated
during the working group time will continue, and hope that many may lead to research outcomes. We believe
that even if tangible research outcomes are not produced, the connections that the working groups (and other
workshop activities) established between the postdoctoral fellows and other ECRs, and the world expert
senior researchers, will have a significant and positive impact on the careers of the ECRs.
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